Department of Natural Resources and Parks Wastewater Treatment Division June 9, 2017 ## West Point Treatment Plant Restoration Effluent Priority Pollutant Monitoring Data (Update as of 5/22/17 data) This file contains King County's influent and effluent water quality monitoring data that is being collected at the West Point wastewater treatment plant. While repairs have been underway to repair the treatment processes that were damaged in the flooding on February 9, 2017, King County has collected additional data for the EPA-designated priority pollutant parameters (i.e., consisting primarily of trace metal and organic compounds). The priority pollutants are normally collected on a quarterly frequency in the West Point influent and effluent as required by the National Pollutant Discharge Elimination System (NPDES) permit for West Point. The data collected is used primarily to evaluate the effects of the effluent discharged to Puget Sound from the outfall pipe relative to Washington's marine water quality criteria for the protection of aquatic organisms. Additional influent and effluent samples have been collected on a bi-weekly frequency while repairs to West Point were underway. As of May 10, 2017, repairs at West Point were completed to ensure that quality of secondary treated effluent will consistently meet all permit requirements for the conventional parameters that can affect priority pollutant concentrations (e.g., suspended solids). Effluent quality will continue to be evaluated with samples collected in June to verify that measured concentrations are normal and stable and determine when to resume the routine monitoring of priority pollutants on a once-per-quarter basis. Updates to this data report will be prepared on a periodic basis as the laboratory analysis results become available. The attached file contains the available partial data for influent and effluent samples that were collected on May 10, 2017 and May 22, 2017. The "Preliminary Draft Data" watermark refers to analyses completed and validated by King County; however, submittal of the final data to Ecology is pending completion of all sampling and analysis within the current monthly reporting period. If you have questions about this document, contact Jeff Lafer at 206-477-6315 or email him at jeff.lafer@kingcounty.gov. | | | oint - Influ | ent | | | West Point - Effluent | | | | | Sample | | | | | |--|----------------------|--|--------|-------------|-------|-----------------------|--|-------|----------|--------------|----------------------|---|--------|---------------|--------| | | Project:
Locator: | 421093-100
S4001 | | | | Project:
Locator: | 421093-100
FESD01 | | | | Project:
Locator: | 421093-100
ATMOSBLANK | | | | | | Descrip: | WEST POINT S | TP/DIV | | | Descrip: | WP FINAL EFFI | LUENT | | | Descrip: | ATMOSPHERE | | | t | | | | L67779 | | | | Sample: | L67779 | | | | Sample: | L67779
LN BLANK WT | | | F | | | Matrix:
ColDate: | LB INFLUENT
5/22/17 9:46 | | | | Matrix:
ColDate: | LC EFFLUENT
5/22/17 10:09 | | | | Matrix:
ColDate: | 5/22/17 10:13 | n | | + | | | TimeSpan: | 24 | | | | TimeSpan: | 24 | | | | TimeSpan: | 24 | | | | | Parameters | WET Weight | | MDL | RDL | Units | WET Weight
Value | Qual | MDL | RDL | Units | WET Weight
Value | | MDL | RDL | | | MT EPA 200.8*SW846 6020A Antimony, Total, ICP-MS | 0.49 | | 0.3 | 1 | | 0.31 | <rdl< td=""><td>0.3</td><td>1</td><td></td><td>value</td><td>Quai</td><td>MDL</td><td>RUL</td><td></td></rdl<> | 0.3 | 1 | | value | Quai | MDL | RUL | | | Arsenic, Total, ICP-MS | 1.87 | KNDL | 0.05 | 0.25 | | 1.42 | KNDL | 0.05 | 0.25 | ug/L
ug/L | | | | | $^{+}$ | | Barium, Total, ICP-MS | 25.1 | MBI | 0.5 | 0.5 | ug/L | 9.03 | 110 | 0.5 | 0.5 | ug/L | | | | | Ļ | | Beryllium, Total, ICP-MS
Cadmium, Total, ICP-MS | 0.19 | <mdl
<rdl< td=""><td>0.1</td><td>0.5
0.25</td><td></td><td></td><td><mdl
<mdl< td=""><td>0.1</td><td>0.5</td><td>ug/L
ug/L</td><td></td><td></td><td></td><td>7</td><td></td></mdl<></mdl
</td></rdl<></mdl
 | 0.1 | 0.5
0.25 | | | <mdl
<mdl< td=""><td>0.1</td><td>0.5</td><td>ug/L
ug/L</td><td></td><td></td><td></td><td>7</td><td></td></mdl<></mdl
 | 0.1 | 0.5 | ug/L
ug/L | | | | 7 | | | Chromium, Total, ICP-MS | 3.21 | | 0.2 | 1 | ug/L | 0.81 | <rdl< td=""><td>0.2</td><td>1</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td></rdl<> | 0.2 | 1 | ug/L | | | | | | | Copper, Total, ICP-MS
Lead, Total, ICP-MS | 45.5
4.26 | | 0.2 | 0.5 | | 12.9
0.35 | <rdl< td=""><td>0.2</td><td>0.5</td><td></td><td></td><td></td><td></td><td>$-\mathbf{x}$</td><td>1</td></rdl<> | 0.2 | 0.5 | | | | | $-\mathbf{x}$ | 1 | | Nickel, Total, ICP-MS | 4.29 | | 0.1 | 0.5 | | 2.62 | KNDL | 0.1 | 0.5 | ug/L
ug/L | | · · | | . 7 | | | Selenium, Total, ICP-MS | 1.05 | | 0.5 | 1 | ug/L | 0.55 | <rdl< td=""><td>0.5</td><td>1</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td></rdl<> | 0.5 | 1 | ug/L | | | | | | | Silver, Total, ICP-MS
Thallium, Total, ICP-MS | 0.347 | <mdl< td=""><td>0.04</td><td>0.2</td><td></td><td>0.055</td><td><rdl
<mdl< td=""><td>0.04</td><td>0.2</td><td>ug/L</td><td></td><td></td><td></td><td>_</td><td>-</td></mdl<></rdl
</td></mdl<> | 0.04 | 0.2 | | 0.055 | <rdl
<mdl< td=""><td>0.04</td><td>0.2</td><td>ug/L</td><td></td><td></td><td></td><td>_</td><td>-</td></mdl<></rdl
 | 0.04 | 0.2 | ug/L | | | | _ | - | | Zinc, Total, ICP-MS | 110 | | 0.1 | 2.5 | | 39.1 | KIVIDL | 0.1 | 2.5 | ug/L
ug/L | | | | | + | | MT EPA 1631E | | | | | | | | | | | | | | | I | | Mercury, Total, CVAF CV EPA 420.1 | 0.0186 | | 0.001 | 0.003 | ug/L | 0.00348 | | 0.001 | 0.003 | ug/L | | <mdl< td=""><td>0.0002</td><td>0.0005</td><td>5</td></mdl<> | 0.0002 | 0.0005 | 5 | | Total Phenolics | 0.072 | | 0.04 | 0.04 | mg/L | | <mdl< td=""><td>0.041</td><td>0.041</td><td>mg/L</td><td></td><td>,</td><td>+</td><td></td><td>+</td></mdl<> | 0.041 | 0.041 | mg/L | | , | + | | + | | CV SM4500-CN-I,E | . ,,,_ | | | | | | | | | | | | | | ļ | | Cyanide, Weak & Dissociable | | <mdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td><mdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></td></mdl<> | 0.002 | 0.01 | mg/L | | <mdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td></td><td></td><td></td><td></td></mdl<> | 0.002 | 0.01 | mg/L | | | | | | | | | | | | | | | | N | K | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | • 1 | | | | | | | | | | | | | | | | |) | \ | , | * | () | | | | | | | | | | | | | | | | 1 | O) | • | | | | | | | | | | | | | | | 1 | | • | | | | | | | | | | | | | | 4 | 1 | O) | | | | | | | | | | | | | | | ~~ | 1 | O), | | | | | | | | | | | | | | | 2 | 1 | | | | | | | | | | | | | | | < | 2 | 1 | | | | | | | | | | | | | | | < | 2 | 1 | Ó, | • | | | | | | | | | | | | 2 | | 2 | 1 | Ó, | | | | | | | | | | | | | 7 | | 2 | 7 | Ŏ, | | | | | | | | | | | | | 7 | <
> | 2 | 7 | Ó, | | | | | | | | | | | | | 7 | <
> | 2 | 7 | O) | | | | | | | | | | | | | 1 | <
> | ? | 7 | Ŏ, | | | | | | | | | | | | 7, | 7 | < | 3 | 7 | O) | | | | | | | | | | | | | 7 | < | 3 | 7 | | | | | | | | | | | | | | 1 | < | 3 | 7 | | | | | | | | | | | | | | 7 | | 3 | 7 | | | | | | | | | | | | | | 1 | < | 3 | 1 | | | | | | | | | | | | | | 1 | \ | 3 | 1 | | | | | | | | | | | | | | 7 | <
> | 2 | 1 | | | | | | | | | | | | | | | <
> | 3 | 1 | | | | | | | | | | | | | | | | 3 | 1 | | | | | | | | | | | | | | | <
> | 3 | 1 | | | | | | | | | | | | | | | | 3 | 1 | | | | | | | | | | | | | | | \ | 3 | | | | | | | | | | | | | | | | <
> | 3 | 1 | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | ? | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | ? | | | | | | | | | | | | Locator: Descrip: Sample: Matrix: ColDate: | 421093-100 \$4001 | MDL 0.3 0.1 0.5 0.1 0.05 0.1 0.1 0.5 0.04 0.04 0.002 | RDL 1 1 0.5 5 0.5 0.5 0.25 1 2 0.05 1 0.02 0.01 0.001 | | Locator: Descrip: Descrip: Sample: Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | 421093-100 FESDD1 WP FINAL EFFL (67682 LC EFFLUENT 5710/17 10:08 24 Basis Cual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>MDL 0.3 0.1 0.5 0.2 0.2 0.1 0.1 0.5 0.2 0.1 0.1 0.5 0.02 0.1 0.1 0.05</th><th>RDL
1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
1
0.25
0.5
0.5
0.5
0.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.</th><th>Units ug/L ug/L</th><th>Locator: Descrip: Sample: Matrix: ColDate:</th><th>421093-100
ATMOSBLANK
ATMOSPHERE
L67682
LN BLANK WTF
5/10/17 10:10
24</th><th></th><th>RDL</th><th>Units</th></rdl> | MDL 0.3 0.1 0.5 0.2 0.2 0.1 0.1 0.5 0.2 0.1 0.1 0.5 0.02 0.1 0.1 0.05 | RDL
1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
1
0.25
0.5
0.5
0.5
0.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0. | Units ug/L | Locator: Descrip: Sample: Matrix: ColDate: | 421093-100
ATMOSBLANK
ATMOSPHERE
L67682
LN BLANK WTF
5/10/17 10:10
24 | | RDL | Units | |---|---|--|--|---|---|--|---|--|---|---|---|--------|--------|-------------| | Descrip: Sample: Matrix: Colloate: FilmeSpan: WET Weight Value 0.48 1.58 1.59 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | WEST POINT S L67682 LB INFLUENT 5/10/17 9:39 24 Basis <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/</th><th>Descrip: Sample: Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>WP FINAL EFFL L67682 LC EFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Descrip:
Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>ATMOSPHERE
L67682
LN BLANK WTF
5/10/17 10:10
24
Basis</th><th>}</th><th>RDL</th><th>Uni</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/ | Descrip: Sample: Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | WP FINAL EFFL L67682 LC EFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Descrip:
Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>ATMOSPHERE
L67682
LN BLANK WTF
5/10/17 10:10
24
Basis</th><th>}</th><th>RDL</th><th>Uni</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | Descrip:
Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight | ATMOSPHERE
L67682
LN BLANK WTF
5/10/17 10:10
24
Basis | } | RDL | Uni | | Sample: Matrix: Matrix: OnlDate: GrineSpan: WET Weight Value 0.48 1.58 1.99 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | L67682 LB INFLUENT 5/10/17 9:39 24 Basis <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/</th><th>Sample: Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>L67682 LC EFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>L67682
LN BLANK WTF
5/10/17 10:10
24
Basis</th><th>}</th><th>RDL</th><th>Uni</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/ | Sample: Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | L67682 LC EFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>L67682
LN BLANK WTF
5/10/17 10:10
24
Basis</th><th>}</th><th>RDL</th><th>Uni</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | Sample:
Matrix:
ColDate:
TimeSpan:
WET Weight | L67682
LN BLANK WTF
5/10/17 10:10
24
Basis | } | RDL | Uni | | Matrix: ColDate: ImmeSpan: WET Weight Value 0.48 1.58 19 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | 5/10/17 9:39 24 Basis <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/</th><th>Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>CEFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <rdl="" <rdl<="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>LN BLANK WTF
5/10/17 10:10
24
Basis</th><th></th><th>RDL</th><th>Uni</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/ | Matrix: ColDate: TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | CEFFLUENT 5/10/17 10:08 24 Basis Qual <rdl <mdl="" <rdl="" <rdl<="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>Matrix:
ColDate:
TimeSpan:
WET Weight</th><th>LN BLANK WTF
5/10/17 10:10
24
Basis</th><th></th><th>RDL</th><th>Uni</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | Matrix:
ColDate:
TimeSpan:
WET Weight | LN BLANK WTF
5/10/17 10:10
24
Basis | | RDL | Uni | | WET Weight Value 0.48 1.58 19 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | 24 Basis <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</th><th>1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L</th><th>TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>TimeSpan:
WET Weight</th><th>24
Basis</th><th>MDL</th><th>RDL</th><th>Unit</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L | TimeSpan: WET Weight Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | 24 Basis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>TimeSpan:
WET Weight</th><th>24
Basis</th><th>MDL</th><th>RDL</th><th>Unit</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | TimeSpan:
WET Weight | 24
Basis | MDL | RDL | Unit | | Value 0.48 1.58 19 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | Rasis <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</th><th>1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L</th><th>Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>Rasis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>WET Weight</th><th>Basis</th><th>MDL</th><th>RDL</th><th>Unit</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L | Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | Rasis Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>WET Weight</th><th>Basis</th><th>MDL</th><th>RDL</th><th>Unit</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | WET Weight | Basis | MDL | RDL | Unit | | Value 0.48 1.58 19 0.22 1.64 26.3 2.47 3.75 0.67 0.16 61.8 | <rdl <adl="" <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</th><th>1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>Units ug/L ug/L</th><th>Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2</th><th>Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th></th><th></th><th>MDL</th><th>RDL</th><th>Uni</th></rdl></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | Units ug/L | Value 0.45 1.66 20.4 0.285 1.8 28.6 3.1 3.9 0.78 0.18 66.2 | Qual <rdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th></th><th></th><th>MDL</th><th>RDL</th><th>Uni</th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | MDL | RDL | Uni | | 0.48
1.58
19
0.22
1.64
26.3
2.47
3.75
0.67
0.16 | <mdl <mdl="" <mdl<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</th><th>1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>0.45
1.66
20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2</th><th><rdl <mol<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>value</th><th>Qual</th><th>MUL</th><th>RUL</th><th></th></rdl></th></mdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
0.5
0.5
0.25
0.25
1
2
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 0.45
1.66
20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2 | <rdl <mol<="" <rdl="" th=""><th>0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</th><th>1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5</th><th>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</th><th>value</th><th>Qual</th><th>MUL</th><th>RUL</th><th></th></rdl> | 0.3
0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 1
0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.2
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | value | Qual | MUL | RUL | | | 1.58
19
0.22
1.64
26.3
2.47
3.75
0.67
0.16 | <mdl <mdl="" <mdl<="" <rdl="" td=""><td>0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04</td><td>0.5
0.5
0.25
1
0.5
0.5
0.5
0.5
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>1.66
20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2</td><td><mdl <mdl="" <mdl<="" <rdl="" td=""><td>0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl></td></mdl> | 0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04 | 0.5
0.5
0.25
1
0.5
0.5
0.5
0.5
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 1.66
20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2 | <mdl <mdl="" <mdl<="" <rdl="" td=""><td>0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl> | 0.1
0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 0.5
0.5
0.5
0.25
1
2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | | | | | 19
0.22
1.64
26.3
2.47
3.75
0.67
0.16 | <rdl <mdl="" <mdl<="" <rdl="" td=""><td>0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</td><td>0.5
0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2
0.0154</td><td><rdl
<rdl
<mdl< td=""><td>0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.25
1
2
0.5
0.5
0.5
0.5
1
0.2
0.2</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td>></td></mdl<></rdl
</rdl
</td></rdl> | 0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 0.5
0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 20.4
0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2
0.0154 | <rdl
<rdl
<mdl< td=""><td>0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.25
1
2
0.5
0.5
0.5
0.5
1
0.2
0.2</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td>></td></mdl<></rdl
</rdl
 | 0.5
0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 0.5
0.25
1
2
0.5
0.5
0.5
0.5
1
0.2
0.2 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | | | > | | 0.22
1.64
26.3
2.47
3.75
0.67
0.16 | <rdl <mdl="" <mdl<="" <rdl="" td=""><td>0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</td><td>0.5
0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2</td><td><rdl
<rdl
<mdl< td=""><td>0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.25
1
2
0.5
0.5
1
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td>X</td><td></td></mdl<></rdl
</rdl
</td></rdl> | 0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 0.5
0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 0.285
1.8
28.6
3.1
3.9
0.78
0.18
66.2 | <rdl
<rdl
<mdl< td=""><td>0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.25
1
2
0.5
0.5
1
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td>X</td><td></td></mdl<></rdl
</rdl
 | 0.1
0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 0.5
0.25
1
2
0.5
0.5
1
0.2
2.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | | X | | | 1.64
26.3
2.47
3.75
0.67
0.16 | <rdl <mdl="" <mdl<="" <rdl="" td=""><td>0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.04</td><td>0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>1.8
28.6
3.1
3.9
0.78
0.18
66.2</td><td><rdl
<rdl
<mdl< td=""><td>0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.25
1
2
0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</rdl
</td></rdl> | 0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.04 | 0.25
1
2
0.5
0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 1.8
28.6
3.1
3.9
0.78
0.18
66.2 | <rdl
<rdl
<mdl< td=""><td>0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5</td><td>0.25
1
2
0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</rdl
 | 0.05
0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5 | 0.25
1
2
0.5
0.5
1
0.2
0.2
2.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | | | | | 1.64
26.3
2.47
3.75
0.67
0.16 | <rdl
<rdl
<mdl< td=""><td>0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002</td><td>1
2
0.5
0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>1.8
28.6
3.1
3.9
0.78
0.18
66.2</td><td><rdl
<mdl< td=""><td>0.2
0.2
0.1
0.1
0.5
0.04
0.1</td><td>1
2
0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</td></mdl<></rdl
</rdl
 | 0.2
0.2
0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 1
2
0.5
0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 1.8
28.6
3.1
3.9
0.78
0.18
66.2 | <rdl
<mdl< td=""><td>0.2
0.2
0.1
0.1
0.5
0.04
0.1</td><td>1
2
0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
 | 0.2
0.2
0.1
0.1
0.5
0.04
0.1 | 1
2
0.5
0.5
1
0.2
0.2
2.5 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | | | | | | | 2.47
3.75
0.67
0.16 | <mdl< td=""><td>0.1
0.1
0.5
0.04
0.1
0.5
0.002</td><td>0.5
0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L
ug/L</td><td>3.1
3.9
0.78
0.18
66.2
0.0154</td><td><rdl
<mdl< td=""><td>0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</td></mdl<> | 0.1
0.1
0.5
0.04
0.1
0.5
0.002 | 0.5
0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 3.1
3.9
0.78
0.18
66.2
0.0154 | <rdl
<mdl< td=""><td>0.1
0.5
0.04
0.1
0.5</td><td>0.5
0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
 | 0.1
0.5
0.04
0.1
0.5 | 0.5
0.5
1
0.2
0.2
2.5 | ug/L
ug/L
ug/L
ug/L
ug/L | | | | | | | 3.75
0.67
0.16
61.8 | <mdl< td=""><td>0.1
0.5
0.04
0.1
0.5
0.002</td><td>0.5
1
0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td>3.9
0.78
0.18
66.2
0.0154</td><td><rdl
<mdl< td=""><td>0.1
0.5
0.04
0.1
0.5</td><td>0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</td></mdl<> | 0.1
0.5
0.04
0.1
0.5
0.002 | 0.5
1
0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L | 3.9
0.78
0.18
66.2
0.0154 | <rdl
<mdl< td=""><td>0.1
0.5
0.04
0.1
0.5</td><td>0.5
1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
 | 0.1
0.5
0.04
0.1
0.5 | 0.5
1
0.2
0.2
2.5 | ug/L
ug/L
ug/L
ug/L
ug/L | | | | | | | 0.67
0.16
61.8 | <mdl< td=""><td>0.5
0.04
0.1
0.5
0.002</td><td>0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
ug/L</td><td>0.78
0.18
66.2
0.0154</td><td><rdl
<mdl< td=""><td>0.5
0.04
0.1
0.5</td><td>1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</td></mdl<> | 0.5
0.04
0.1
0.5
0.002 | 0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
ug/L | 0.78
0.18
66.2
0.0154 | <rdl
<mdl< td=""><td>0.5
0.04
0.1
0.5</td><td>1
0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
 | 0.5
0.04
0.1
0.5 | 1
0.2
0.2
2.5 | ug/L
ug/L
ug/L
ug/L | | | | | | | 0.16
61.8 | <mdl< td=""><td>0.04
0.1
0.5
0.002</td><td>0.2
0.2
2.5
0.005</td><td>ug/L
ug/L
ug/L
ug/L
mg/L</td><td>0.18
66.2
0.0154</td><td><rdl
<mdl< td=""><td>0.04
0.1
0.5</td><td>0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
</td></mdl<> | 0.04
0.1
0.5
0.002 | 0.2
0.2
2.5
0.005 | ug/L
ug/L
ug/L
ug/L
mg/L | 0.18
66.2
0.0154 | <rdl
<mdl< td=""><td>0.04
0.1
0.5</td><td>0.2
0.2
2.5</td><td>ug/L
ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<></rdl
 | 0.04
0.1
0.5 | 0.2
0.2
2.5 | ug/L
ug/L
ug/L | | | | | | | | <mdl< td=""><td>0.5</td><td>0.005</td><td>ug/L
ug/L
ug/L
mg/L</td><td>0.0154</td><td></td><td>0.5</td><td>2.5</td><td>ug/L
ug/L</td><td></td><td></td><td></td><td></td><td></td></mdl<> | 0.5 | 0.005 | ug/L
ug/L
ug/L
mg/L | 0.0154 | | 0.5 | 2.5 | ug/L
ug/L | | | | | | | | | 0.002 | 0.005 | ug/L
mg/L | 0.0154 | <mdl< td=""><td></td><td></td><td></td><td></td><td>$\overline{}$</td><td></td><td></td><td></td></mdl<> | | | | | $\overline{}$ | | | | | 0.0156 | | 0.04 | 0.04 | mg/L | | <mdl< td=""><td>0.002</td><td>0.005</td><td>ua/l</td><td></td><td></td><td></td><td></td><td></td></mdl<> | 0.002 | 0.005 | ua/l | | | | | | | 0.0130 | | 0.04 | 0.04 | mg/L | | <mdl< td=""><td>0.002</td><td>0.003</td><td></td><td></td><td><mdl< td=""><td>0.0002</td><td>0.0005</td><td>ug</td></mdl<></td></mdl<> | 0.002 | 0.003 | | | <mdl< td=""><td>0.0002</td><td>0.0005</td><td>ug</td></mdl<> | 0.0002 | 0.0005 | ug | | | | | | | | <mdl< td=""><td></td><td></td><td>ugrL</td><td></td><td>DL</td><td>0.0002</td><td>3.0003</td><td>u</td></mdl<> | | | ugrL | | DL | 0.0002 | 3.0003 | u | | | <mdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td></td><td>0.04</td><td>0.04</td><td>mg/L</td><td></td><td></td><td></td><td></td><td></td></mdl<> | 0.002 | 0.01 | mg/L | | | 0.04 | 0.04 | mg/L | | | | | | | | <mdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdl<> | 0.002 | 0.01 | mg/L | | 5 | | | | | | | | | | | | | | | 0.002 | <rdl< td=""><td>0.002</td><td>0.01</td><td>mg/L</td><td></td><td></td><td></td><td></td><td></td></rdl<> | 0.002 | 0.01 | mg/L | | | | | | | | | | | 3 |