2009 COMMUNICABLE DISEASE SURVEILLANCE SUMMARY

Communicable Disease Epidemiology and Immunization Section
401 Fifth Avenue, Suite 900
Seattle, Washington 98104
206-296-4774

HIV/AIDS Epidemiology Program
400 Yesler Way, 3rd Floor
Seattle, Washington 98104
206-296-4645

Sexually Transmitted Diseases (STD) Program
Harborview Medical Center
908 Jefferson St, Ste 1110
or PO Box 359777
Seattle, Washington 98104
206-744-3590

Tuberculosis (TB) Control Program
Harborview Medical Center
325 9th Avenue, PO Box 359776
Seattle, Washington 98104
206-744-4579

Published by Public Health—Seattle and King County’s Communicable Disease Epidemiology and Immunization Section.
November 2010

Available in alternate formats.
Executive Summary

A core activity of public health is monitoring and responding to infectious diseases. Public Health – Seattle & King County’s Communicable Disease Epidemiology and Immunization Section uses surveillance data — the systematic collection and analysis of disease data — to identify health risks and patterns of disease in King County. This surveillance data is used to control the spread of infectious disease and guide prevention activities, ultimately protecting King County residents from infectious diseases that could have significant impact on the health of our communities. In 2009, nearly 14,000 reports of communicable diseases were submitted to Public Health.

Highlights of the 2009 Communicable Disease Surveillance Summary include:

- **H1N1**: The outbreak of influenza A 2009 H1N1 was the first flu pandemic of the 21st century. Public Health worked with King County health care providers, hospitals, schools, child care centers, and other community partners to monitor and respond to the outbreak.

- **Salmonella**: Multi-state Salmonella outbreaks linked to commercially distributed food products or animals contributed to 250 cases of salmonella across King County. Sources of the outbreaks included black pepper imported from Asia, red pepper used in the manufacture of salami, contaminated shredded lettuce, and pet African dwarf frogs. In addition, a local outbreak of salmonellosis associated with improper food safety procedures at a local restaurant sickened 17 county residents.

- **E. coli**: Better detection of Shiga toxin-producing *E. coli* (formerly called enterohemorrhagic *E. coli*) led to an increase in reported cases in 2009. Sources of infection included contaminated raw cookie dough associated with a multistate outbreak and a residential farm in Yakima where three King County residents were infected.

- **Chronic hepatitis infections**: Public Health continues to see a high number of chronic hepatitis B and chronic hepatitis C infections among adults.

- **Travel-associated diseases**: A variety of travel-associated diseases were acquired by King County residents, including salmonellosis and typhoid fever, shigellosis, campylobacteriosis, giardiasis, dengue fever, hepatitis A, measles, malaria and potential rabies exposures requiring preventive treatment.

In addition to surveillance and prevention, Public Health also works closely with law enforcement agencies and Washington State Department of Health to investigate and respond to potential intentional exposures to biological agents and suspicious substances, focusing on threats deemed credible by law enforcement. Public Health investigated three incidents that were deemed credible threats in 2009. Testing was negative for bioterrorism agents in all cases.

Public Health also investigates and responds to emerging infections such as novel influenza (including H1N1 or avian flu), SARS, and *Cryptococcus gattii*, a rare cause of serious and potentially fatal infections.

In response to incidents of infectious disease in King County, Public Health takes action to help people who have been exposed, stop the spread of infection, and identify and promote prevention measures such as vaccines.
INTRODUCTION

The mission of the Communicable Disease Epidemiology & Immunization Section of Public Health – Seattle & King County is to protect King County residents from infectious diseases of public health significance. We do this by:

- identifying and promoting the most effective prevention measures (such as vaccination)
- monitoring the occurrence of diseases in the community
- taking action to stop the spread of infections from contaminated food, beverages, environmental sources or contact with ill person, and
- helping people who have been exposed to infectious agents minimize their risk of getting sick and/or spreading infection to others
- providing information to health care providers and the public to help identify, manage and prevent infections

A core activity of public health is surveillance. Our epidemiologists systematically collect and analyze disease data to identify and describe health risks and patterns of disease in the community. We then use surveillance data to guide disease prevention and control activities.

This report summarizes communicable disease surveillance conducted by the following programs of Public Health – Seattle & King County:

- Communicable Disease Epidemiology and Immunization Section (www.kingcounty.gov/health/cd)
- HIV/AIDS Program (www.kingcounty.gov/health/hiv)
- Tuberculosis Control Program (www.kingcounty.gov/health/tb)
- Sexually Transmitted Diseases Program (www.kingcounty.gov/health/std)

Each chapter focuses on a particular disease or "notifiable condition" that laboratories and health care providers are required by Washington State law to report to Public Health.† Most pages have tables and graphs of disease activity in King County in 2009 and how it compares to past years, as well as a brief summary of basic epidemiology, clinical features, and prevention measures.

In addition to surveillance of notifiable conditions, our section also investigates and responds to outbreaks of illness and other cases of diseases with public health significance. These include emerging infections such as novel influenza, SARS, Cryptococcus gattii and suspected biological terrorism.

* Annual reports with more data from the HIV/AIDS Program, Tuberculosis Control Program, and Sexually Transmitted Diseases Program are available on their respective websites.

† The list of legally notifiable conditions is updated periodically and can be found at http://www.doh.wa.gov/Notify/other/legal.htm - click on "Notifiable conditions and the health care provider" and "Notifiable conditions and laboratories."
TABLE OF CONTENTS

Executive Summary .. 1
Glossary ... 3
Public Health Contact Numbers ... 4
Notifiable Communicable Disease Conditions in Washington .. 5
Notifiable Communicable Disease Reports table: 2000-2009 ... 7
Animal Bites and Other Potential Rabies exposures ... 9
Arboviral Disease ... 10
Bioterrorism—Diseases of Suspected Bioterrorism Origin .. 11
Botulism .. 12
Brucellosis ... 13
Campylobacteriosis .. 14
Cholera ... 15
Cryptosporidiosis ... 16
Cyclosporiasis .. 17
Diphtheria .. 18
E. coli – Shiga toxin-producing strains including O157:H7 .. 19
Foodborne Illness .. 20
Giardiasis ... 21
Haemophilus Influenzae Invasive Disease .. 22
Hantavirus Pulmonary Syndrome .. 23
Hepatitis A .. 24
Hepatitis B—Acute and Chronic Infections .. 25
Hepatitis C—Acute and Chronic Infections .. 26
Hepatitis E .. 27
HIV and AIDS ... 28
Influenza A 2009 H1N1 .. 29
Legionellosis .. 30
Leptospirosis ... 31
Listeriosis ... 32
Lyme disease .. 33
Malaria ... 34
Measles ... 35
Meningococcal Disease ... 36
Mumps .. 37
Paralytic Shellfish Poisoning ... 38
Pertussis .. 39
Plague .. 40
Poliomyelitis .. 41
Psittacosis .. 42
Q Fever ... 43
Rare Diseases of Public Health Significance ... 44
Relapsing Fever ... 45
Rubella ... 46
Salmonellosis .. 47
Sexually Transmitted Diseases: Chlamydia ... 48
Sexually Transmitted Diseases: Gonorrhea ... 49
Sexually Transmitted Diseases: Syphilis .. 50
Shigellosis .. 51
Tetanus .. 52
Trichinosis .. 53
Tuberculosis ... 54
Tularemia .. 55
Typhoid & Paratyphoid Fever ... 56
Vibriosis (Non-Cholera) ... 57
Yersiniosis ... 58
GLOSSARY

Arboviral disease: A group of viral diseases transmitted to humans by arthropods such as mosquitoes and ticks.

Bacteremia: The presence of live bacteria in the blood stream.

CDC: Centers for Disease Control and Prevention, Atlanta, GA.

Endemic: Occurring in a particular geographic area or people.

Enteric infection: An infection of the gastrointestinal tract.

Exposure period: The time period during which a person was likely exposed to the infectious agent causing the illness. This is calculated using the typical range of the incubation period for the agent (see below).

Fecal-oral transmission: A means of disease transmission in which microscopic viruses, bacteria, or parasites in the stool of infected persons are swallowed by another person, causing infection. Usually this occurs when food, water, utensils, hands or other body parts are contaminated by small amounts of stool. The risk of fecal-oral transmission is increased by inadequate hand washing before preparing food or after activities such as using the toilet, assisting incontinent children or adults with toileting, diaper changing, and certain sexual practices.

Incidence rate: The number of new cases of a disease in a specified population divided by the number of persons at risk during a specified time period. In this report, incidence rate is reported as the number of new cases of disease per 100,000 people per year, using 2009 King County population statistics from the State of Washington Office of Financial Management. The number of children under 12 months of age was estimated by using the proportion of the population under 12 months in the year 2000, the last year for which estimates for this age group are available at the time of this report.

Incubation period: The time between exposure to an infectious agent and the onset of symptoms of disease due to that agent.

Nosocomial: Originating or taking place in a hospital or other health care facility.

Prevalence: The number of individuals with a disease divided by the total number of people at risk for that disease at a specific time interval.

Prodrome: Early symptoms that may precede the characteristic symptoms of an illness.

Prophylaxis: Treatment given during or after exposure to an infectious agent and before illness develops to prevent disease from occurring. Prophylactic treatment includes administration of antibiotics (e.g., to prevent certain infections such as pertussis or meningococcal disease), antivirals (e.g., influenza), anti-parasitics (e.g., malaria), immune-globulin (e.g., hepatitis B, tetanus, and rabies), or vaccine (e.g., hepatitis A, measles, and rabies).

Public Health: When capitalized this refers to Public Health - Seattle & King County; when in lower case, it refers to the general definition of public health.

Public Health Laboratory: The Public Health - Seattle & King County Laboratory located at 325 Ninth Avenue, Seattle, Washington 98104.

Sporadic case: A single, isolated case of disease not known to be related to other cases or associated with an outbreak.
PUBLIC HEALTH CONTACT NUMBERS

<table>
<thead>
<tr>
<th>Service</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicable Disease Epidemiology & Immunizations</td>
<td>206-296-4774</td>
</tr>
<tr>
<td>24-Hour Communicable Disease Hotline (recorded information and updates on current public health issues)</td>
<td>206-296-4949</td>
</tr>
<tr>
<td>HIV/AIDS Program</td>
<td>206-296-4649</td>
</tr>
<tr>
<td>Sexually Transmitted Disease (STD) Clinic</td>
<td>206-744-3590</td>
</tr>
<tr>
<td>Tuberculosis Clinic</td>
<td>206-744-4579</td>
</tr>
</tbody>
</table>

FOR HEALTH CARE PROVIDERS ONLY

<table>
<thead>
<tr>
<th>Service</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicable diseases other than HIV, STDs, and TB (daytime and after hours – to report an immediately notifiable conditions after-hours and on weekends, ask operator to page the epidemiologist on call for Communicable Disease)</td>
<td>206-296-4774</td>
<td>206-296-4803</td>
</tr>
<tr>
<td>24-Hour disease report line to leave a recorded message (ONLY for reporting non-immediately notifiable conditions other than HIV, STDs, and TB)</td>
<td>206-296-4782</td>
<td></td>
</tr>
<tr>
<td>HIV/AIDS Program and Report Line (mail or call in reports only)</td>
<td>206-296-4645</td>
<td></td>
</tr>
<tr>
<td>Sexually Transmitted Diseases Report Fax Line (fax reports only)</td>
<td></td>
<td>206-744-5622</td>
</tr>
<tr>
<td>Sexually Transmitted Diseases Reporting Inquiries</td>
<td>206-744-3954</td>
<td></td>
</tr>
<tr>
<td>Sexually Transmitted Disease (STD) Clinic</td>
<td>206-744-3590</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis Clinic and Report Line (daytime and after hours)</td>
<td>206-744-4579</td>
<td>206-744-4350</td>
</tr>
<tr>
<td>Public Health Laboratory</td>
<td>206-744-8950</td>
<td>206-744-8963</td>
</tr>
<tr>
<td>Notifiable Condition</td>
<td>Notifiable by Health Care Provider</td>
<td>Notifiable by Laboratory</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Acquired Immunodeficiency Syndrome (AIDS)</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Animal Bites</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Arboviral disease</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Botulism (foodborne)</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Botulism (infant)</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Botulism (wound)</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Brucellosis (Brucella species)</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>CD4+ (T4) lymphocyte counts less than 200 or 14%</td>
<td></td>
<td>Monthly</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Chancroid</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Chlamydia trachomatis infection</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Cholera</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Cyclosporiasis</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Disease of Suspected Bioterrorism Origin:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthrax</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Smallpox</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Disease of Suspected Foodborne Origin (clusters only)</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Disease of Suspected Waterborne Origin (clusters only)</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>E. coli – Shiga toxin-producing strains including O157:H7</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Gonorrhea</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Granuloma Inguinale</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenza invasive disease (under age 5 years, excluding otitis media)</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Hantavirus Pulmonary Syndrome</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Hemolytic Uremic Syndrome</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Immediately</td>
<td>IgM Positive, Within 2 work days</td>
</tr>
<tr>
<td>Hepatitis B (acute)</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B surface antigen positivity in pregnant women</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B (chronic) Initial diagnosis, and previously unreported prevalent cases</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hepatitis C (acute and chronic)</td>
<td>Monthly</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hepatitis, unspecified (infectious)</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Notifiable Condition</td>
<td>Notifiable by Health Care Provider</td>
<td>Notifiable by Laboratory</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Herpes simplex, neonatal and genital (initial infections only)</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV) infection (Western Blot assays, P24 antigen or viral culture)</td>
<td>Within 3 work days</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV) infection (RNA or DNA nucleic acid tests)</td>
<td></td>
<td>Monthly</td>
</tr>
<tr>
<td>Immunization reactions, severe, adverse</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Legionellosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Listeriosis</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Lyme Disease</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Measles (rubeola)</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Meningococcal disease</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Paralytic Shellfish Poisoning</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Pertussis</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Plague</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Psittacosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Q Fever</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Rabies post-exposure prophylaxis</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Relapsing Fever</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Rubella (including congenital rubella syndrome)</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Salmonellosis (including Typhoid Fever)</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Syphilis (including congenital)</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Tetanus</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Trichinosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Immediately</td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Tuberculosis (Antibiotic sensitivity for first isolates only)</td>
<td></td>
<td>Within 2 work days</td>
</tr>
<tr>
<td>Tularemia</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Typhus</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Vibriosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>Immediately</td>
<td></td>
</tr>
<tr>
<td>Yersiniosis</td>
<td>Within 3 work days</td>
<td></td>
</tr>
<tr>
<td>Other rare diseases of public health significance</td>
<td>Immediately</td>
<td>Immediately</td>
</tr>
<tr>
<td>Unexplained critical illness or death</td>
<td>Immediately</td>
<td></td>
</tr>
</tbody>
</table>
NOTIFIABLE COMMUNICABLE DISEASE REPORTS - KING COUNTY 2000-2009

<table>
<thead>
<tr>
<th>Disease</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Bites and other potential rabies exposures</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>106</td>
<td>223</td>
<td>430</td>
<td>633</td>
<td>878</td>
<td>905</td>
<td>1,119</td>
</tr>
<tr>
<td>Arboviral disease</td>
<td>NR</td>
</tr>
<tr>
<td>Botulism, infant</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Botulism, foodborne</td>
<td>0</td>
</tr>
<tr>
<td>Botulism, wound</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>320</td>
<td>325</td>
<td>300</td>
<td>262</td>
<td>264</td>
<td>337</td>
<td>258</td>
<td>262</td>
<td>296</td>
<td>274</td>
</tr>
<tr>
<td>Chlamydia</td>
<td>4,495</td>
<td>4,295</td>
<td>4,471</td>
<td>5,189</td>
<td>5,428</td>
<td>5,520</td>
<td>5,319</td>
<td>5,682</td>
<td>5,962</td>
<td>5,807</td>
</tr>
<tr>
<td>Cholera</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cryptosporidosis</td>
<td>5</td>
<td>29</td>
<td>34</td>
<td>38</td>
<td>34</td>
<td>69</td>
<td>45</td>
<td>46</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Cyclosporiasis</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>0</td>
</tr>
<tr>
<td>E. coli – Shiga toxin-producing strains including O157:H7</td>
<td>60</td>
<td>36</td>
<td>32</td>
<td>43</td>
<td>42</td>
<td>45</td>
<td>42</td>
<td>37</td>
<td>49</td>
<td>66</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>229</td>
<td>150</td>
<td>171</td>
<td>124</td>
<td>126</td>
<td>144</td>
<td>117</td>
<td>150</td>
<td>114</td>
<td>100</td>
</tr>
<tr>
<td>Gonorrhea</td>
<td>1,222</td>
<td>1,556</td>
<td>1,462</td>
<td>1,349</td>
<td>1,286</td>
<td>1,769</td>
<td>1,987</td>
<td>1,409</td>
<td>1,294</td>
<td>1,084</td>
</tr>
<tr>
<td>Haemophilus influenzae invasive disease (under age 5 years)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hantavirus Pulmonary Syndrome</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>98</td>
<td>28</td>
<td>32</td>
<td>30</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Hepatitis B, acute</td>
<td>42</td>
<td>36</td>
<td>31</td>
<td>34</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>23</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>Hepatitis B, chronic</td>
<td>397</td>
<td>628</td>
<td>581</td>
<td>522</td>
<td>629</td>
<td>708</td>
<td>840</td>
<td>839</td>
<td>878</td>
<td>611</td>
</tr>
<tr>
<td>Hepatitis C, chronic</td>
<td>1,350</td>
<td>1,949</td>
<td>1,925</td>
<td>1,099</td>
<td>1,636</td>
<td>1,728</td>
<td>1,783</td>
<td>1,759</td>
<td>1,858</td>
<td>1,589</td>
</tr>
<tr>
<td>Hepatitis C, acute</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>242</td>
<td>320</td>
<td>278</td>
<td>653</td>
<td>555</td>
<td>568</td>
<td>478</td>
<td>404</td>
<td>359</td>
<td>344</td>
</tr>
<tr>
<td>Legionellosis</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Disease</td>
<td>2000</td>
<td>2001</td>
<td>2002</td>
<td>2003</td>
<td>2004</td>
<td>2005</td>
<td>2006</td>
<td>2007</td>
<td>2008</td>
<td>2009</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Lyme disease</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Malaria</td>
<td>20</td>
<td>9</td>
<td>15</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>25</td>
<td>15</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Measles</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Meningococcal disease</td>
<td>17</td>
<td>13</td>
<td>21</td>
<td>6</td>
<td>18</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mumps</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paralytic Shellfish Poisoning</td>
<td>0</td>
</tr>
<tr>
<td>Pertussis</td>
<td>207</td>
<td>39</td>
<td>156</td>
<td>280</td>
<td>201</td>
<td>217</td>
<td>105</td>
<td>119</td>
<td>78</td>
<td>37</td>
</tr>
<tr>
<td>Psittacosis</td>
<td>0</td>
</tr>
<tr>
<td>Q Fever</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Relapsing Fever</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rubella</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>205</td>
<td>260</td>
<td>212</td>
<td>243</td>
<td>234</td>
<td>218</td>
<td>205</td>
<td>241</td>
<td>262</td>
<td>250</td>
</tr>
<tr>
<td>Shigelllosis</td>
<td>156</td>
<td>111</td>
<td>86</td>
<td>88</td>
<td>63</td>
<td>72</td>
<td>52</td>
<td>50</td>
<td>41</td>
<td>61</td>
</tr>
<tr>
<td>Syphilis</td>
<td>117</td>
<td>110</td>
<td>96</td>
<td>84</td>
<td>166</td>
<td>188</td>
<td>185</td>
<td>194</td>
<td>191</td>
<td>160</td>
</tr>
<tr>
<td>Tetanus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trichinosis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>127</td>
<td>139</td>
<td>158</td>
<td>155</td>
<td>133</td>
<td>127</td>
<td>145</td>
<td>161</td>
<td>121</td>
<td>130</td>
</tr>
<tr>
<td>Tularemia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhoid Fever</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Vibriosis</td>
<td>7</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>39</td>
<td>11</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Yersiniosis</td>
<td>20</td>
<td>17</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>9,393</td>
<td>10,143</td>
<td>10,185</td>
<td>10,415</td>
<td>11,214</td>
<td>12,434</td>
<td>12,245</td>
<td>12,368</td>
<td>12,572</td>
<td>13,799</td>
</tr>
</tbody>
</table>
ANIMAL BITES AND OTHER POTENTIAL RABIES EXPOSURES

Purpose of Surveillance:
- To identify persons potentially exposed to rabies and to ensure appropriate evaluation and preventive treatment if necessary
- To assure that potentially rabid animals are managed appropriately
- To identify animal sources of rabies and risk for rabies transmission

Epidemiology:
Animal bites are more common in the summer months. Children are at the greatest risk of being bitten. In King County, reported animal bites are assessed for the risk of rabies. The rabies virus is transmitted by the saliva of infected animals. Bats are the primary reservoir of rabies in Washington state. Wildlife most likely to carry rabies in the U.S. includes bats, skunks, raccoon, foxes, and coyotes. Washington has no known terrestrial reservoir of rabies; however, rabies is a dynamic disease among animal populations and may be introduced in the future. Domestic animals such as cats, dogs, ferrets, horses, cattle, goats, and llamas can also get rabies, usually from the bite of a wild animal or bat.

Clinical Aspects:
Rabies is a viral disease of the central nervous system that is practically always fatal once symptoms begin. Signs of rabies include behavior changes, difficulty swallowing, convulsions, and paralysis. In humans, death almost always occurs within 10 days of onset of symptoms.

Prevention:
Keep rabies vaccinations up to date for all dogs, cats, and ferrets. Seattle and King County regulations require that all dogs, cats and ferrets be vaccinated for rabies by 4 months of age. Do not handle, feed, or unintentionally attract wild animals with open garbage cans, uncovered compost bins, or pet food left outside. Teach children never to approach or touch unfamiliar animals, wild or domestic, even if they appear friendly. Safely capture any bat that is known or suspected to have bitten, scratched, or had direct contact with a person or pet, so that it can be tested for rabies (see www.kingcounty.gov/health/cd, and click on “R” to go to the rabies page, then click on “Bats and rabies”). Before traveling abroad, consult with a health care provider, travel clinic, or health department about the risk of exposure to rabies, get vaccinated if advised, and learn what to do if you are bitten by an animal.

The last human cases of rabies in Washington state occurred in 1995 and 1997, both attributed to bat exposures. Prior to that, the last human case of rabies occurred in 1939 from the bite of a rabid dog.

ANIMAL BITES AND OTHER POTENTIAL RABIES EXPOSURES

In 2009, a total of 1,119 animal bites and other potential rabies exposures were reported. Of these, rabies post-exposure prophylaxis (PEP) was recommended for 122 people (11%) because either: 1) the bite was from an animal that was not a dog, cat, or ferret that could be watched for signs of illness during a 10 day quarantine period, or 2) the animal was not available for rabies testing, or 3) the animal tested positive for rabies.

Eighty four (69%) of the 122 rabies PEP cases resulted from exposures within King County to bats (42), raccoons (40), a fox, and a dog. Twenty one (17%) occurred outside of the U.S. to animals including bats, dogs, monkeys, a baboon, and a coati mundi.

Of the 72 animals tested for rabies in King County in 2009, one bat was positive. In Washington, most cases of animal rabies occur in bats. However, most bats do not carry rabies, and most bats tested for rabies in Washington are not infected.
ARBOVIRAL DISEASE

No cases of West Nile virus (WNV) infection acquired in King County were reported in 2009, though one county resident was infected with WNV in Eastern Washington. Two birds tested positive for WNV in King County.

Seven cases of dengue fever were reported in 2009 in persons who had traveled to South America, India, Mexico, and Thailand during their exposure periods.

One case of Toscana virus infection was reported in a person who was likely exposed during travel in Italy. Toscana virus is transmitted to humans by sandflies (Phlebotomus spp.) and is a prominent cause of aseptic meningitis in Mediterranean countries, where the highest risk of infection is from August through October, especially for persons engaging in outdoor activities in rural areas.

One case of St. Louis encephalitis (SLE) was reported in an immune compromised adult, likely exposed during travel to Arizona.

Purpose of Surveillance:
- To identify outbreaks, and monitor trends in illness due to the agents of arboviral encephalitis
- To detect and characterize the emergence and features of West Nile Virus (WNV) in King County
- To guide disease investigation and control activities to prevent human infections
- To facilitate appropriate diagnostic testing

Epidemiology: Arboviruses are spread by insects primarily among wild birds and small mammals. They are transmitted to humans (“incidental hosts”) by certain species of mosquitoes that acquire the virus while feeding on infected wild birds and small mammals. Western equine encephalitis (WEE), St. Louis encephalitis (SLE), and West Nile virus (WNV) are examples of arboviral diseases found in Washington. Arboviral diseases that should be considered in symptomatic persons with travel to certain countries (particularly in tropical areas) include Japanese encephalitis, yellow fever, and dengue fever. Arboviruses are typically not spread from person to person, but in rare cases WNV has been spread through blood transfusions, organ transplants, breastfeeding, and perinatally.

Clinical Aspects: The majority of persons infected with arboviruses are asymptomatic. Mild cases are characterized by low-grade fevers, headache, and body aches. More severe infections can involve the brain, leading to neurological symptoms.

Prevention: For mosquito-borne diseases, use insect repellents and stay indoors at dawn and dusk when mosquitoes are the most active. Wear protective clothing (long sleeves and pants). Empty sources of standing water outdoors that could serve as a mosquito breeding site. Measures to prevent person-to-person transmission of WNV include routine screening of donated blood, tissue, and organs for WNV. Vaccines against Japanese encephalitis and yellow fever are available for travelers to endemic areas.

Arbovirus infections became reportable in Washington State in 2006. The state receives 0 to 14 reports of dengue virus infections each year, with rare reports of other arboviral diseases.
BIOTERRORISM—
DISEASES OF SUSPECTED BIOTERRORISM ORIGIN

Diseases of suspected bioterrorism origin have been notifiable in Washington since 2001. This disease category includes, but is not limited to anthrax, brucellosis, Q fever, hemorrhagic fevers, plague, smallpox, and tularemia. No confirmed reports of diseases of bioterrorism origin have occurred in Washington state.

Public Health works closely with law enforcement agencies and Washington State Department of Health to investigate and respond to potential intentional exposures to biological agents and suspicious substances, focusing on threats deemed credible by law enforcement. Public Health investigated four incidents that were deemed credible threats in 2004, four incidents in 2005, none in 2006, one in 2007, two in 2008, and three in 2009. Testing was negative for bioterrorism agents in all cases.

Symptoms and Clinical Findings in Diseases of Possible Bioterrorism Origin

<table>
<thead>
<tr>
<th>Agent</th>
<th>Disease</th>
<th>Symptoms and Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus anthracis</td>
<td>Inhalation</td>
<td>Fever, malaise, cough, and mild chest discomfort progressing to severe respiratory distress with dyspnea, diaphoresis, stridor, cyanosis, and shock. X-ray may show mediastinal widening.</td>
</tr>
<tr>
<td></td>
<td>Anthrax</td>
<td></td>
</tr>
<tr>
<td>Yersinia pestis</td>
<td>Pneumonic</td>
<td>High fever, chills, headache, followed by cough (often with hemoptysis) progressing rapidly to dyspnea, stridor, cyanosis, and death. Gastrointestinal (GI) symptoms are also often present.</td>
</tr>
<tr>
<td></td>
<td>Plague</td>
<td></td>
</tr>
<tr>
<td>Coxiella burnetii</td>
<td>Q fever</td>
<td>Fever, cough, and pleuritic chest pain.</td>
</tr>
<tr>
<td>Francisella tularensis</td>
<td>Typhoidal</td>
<td>Fever, headache, malaise, substernal discomfort, prostration, weight loss, and non-productive cough.</td>
</tr>
<tr>
<td></td>
<td>Tularemia</td>
<td></td>
</tr>
<tr>
<td>Variola virus</td>
<td>Smallpox</td>
<td>Prodrome of malaise, fever, rigors, vomiting, headache, and backache. Two to three days later, macular lesions quickly progress to papular and then pustular lesions. Lesions develop synchronously and are more abundant on the extremities, helping to differentiate it from rash due to varicella.</td>
</tr>
<tr>
<td>Various</td>
<td>Hemorrhagic</td>
<td>Variable: Fever, flushing of the face and chest, petechiae, bleeding, edema, hypotension and shock; may include malaise, myalgias, headache, vomiting, and diarrhea.</td>
</tr>
<tr>
<td></td>
<td>Fevers</td>
<td></td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>Inhalation</td>
<td>Cranial nerve palsies including ptosis, blurred vision, diplopia, dysphonia, dysphagia followed by symmetrical descending flaccid paralysis.</td>
</tr>
<tr>
<td>toxin</td>
<td>Botulism</td>
<td></td>
</tr>
</tbody>
</table>
One fatal case of wound botulism in an injection drug user was reported in 2009. Between 1999 and 2008, 26 cases of wound botulism were reported in Washington including three King County cases associated with injecting black tar heroin, all with toxin type A.

No cases of foodborne botulism have been reported in King County since 1993, when three cases occurred associated with home-canned beets. Between the years 1993 and 2003, there were eight reported cases of infant botulism, but none since.

Each year in King County 0 to 5 cases are reported, investigated, and determined not to be botulism. In 2009 there were two such cases.

Purpose of Surveillance:
- To facilitate diagnosis of suspected cases and treatment with botulinum antitoxin when indicated
- To identify other exposed persons requiring medical evaluation, monitoring and/or treatment
- To identify and investigate common source outbreaks
- To identify and remove contaminated food products that could cause further cases of foodborne botulism
- To identify and investigate cases resulting from a bioterrorism attack

Epidemiology: Spores from *Clostridium botulinum* are found worldwide in soil, agricultural products, and animal intestinal tracts. Illness is caused by the toxin produced by the bacterium after germination. Foodborne botulism results from consuming food that has been improperly handled or preserved, allowing *C. botulinum* spores to germinate and produce botulinum toxin. Infant or intestinal botulism occurs almost exclusively in children under one year of age when ingested spores germinate and colonize the intestines. Wound botulism occurs when *C. botulinum* infects a break in the skin. Outbreaks of wound botulism have occurred among persons who inject illicit drugs.

Clinical Aspects: Symptoms of foodborne botulism include difficulty swallowing, difficulty speaking, and blurred vision. Gastrointestinal symptoms include constipation, vomiting and diarrhea. Infant botulism usually begins with constipation followed by lethargy, difficulty swallowing, and weakness. Symptoms of wound botulism are similar to those seen in foodborne botulism, without gastrointestinal symptoms. For all types of botulism, treatment is supportive care and early administration of botulinum antitoxin.

Prevention: Follow proper home canning techniques and know the time, pressure, and temperature required to destroy spores. Never eat food from damaged cans. Do not feed honey or honey water to infants under 12 months old.
BRUCELLOSIS

No cases of brucellosis were reported in 2009.

From 1994 through 2007 eight cases of brucellosis were reported in King County. One case was reported in an African immigrant in 2003. Two cases were reported in 2007 - an infant and mother who were likely infected by consuming unpasteurized dairy products while travelling in India.

Purpose of Surveillance:
- To identify naturally occurring cases of brucellosis and common source outbreaks
- To identify and eliminate sources of transmission
- To identify cases resulting from a bioterrorism attack

Epidemiology: Brucellosis is a bacterial infection that causes disease in mammals, especially sheep, goats, and cattle. Humans become infected by exposure to the tissues, blood, urine, vaginal discharge, aborted fetuses, and placentas of infected animals. Contaminated animal products (e.g., raw milk and dairy products) can also transmit the disease. Farmers, ranchers, and veterinarians, as well as slaughterhouse workers, meat inspectors, and laboratory personnel are at increased risk for brucellosis. In the United States, 100 to 200 brucellosis cases are reported each year. Most cases result from travel outside the United States and ingestion of unpasteurized milk products. Person-to-person transmission rarely has been documented. Because small amounts of aerosolized bacteria can cause disease, Brucella is considered a potential agent of bioterrorism.

Clinical Aspects: Most patients become ill within three to four weeks of exposure. In humans, brucellosis can cause a range of symptoms including fever, sweats, headaches, back pain, and weakness. Brucellosis can also cause chronic, recurrent fevers, joint pain, fatigue, and heart inflammation. Diagnosis of brucellosis is usually done by detecting antibodies in the blood.

Prevention: Do not consume unpasteurized milk, cheese, or ice cream. Hunters and animal herdsman should use protective gloves when handling animal parts. There is no vaccine available for humans.
CAMPYLOBACTERIOSIS

In 2009, 274 cases of campylobacteriosis were reported. Campylobacter jejuni (C. jejuni) accounted for 132 (96%) of the 137 isolates serotyped. C. coli (4) and C. lardis (1) accounted for the other five serotyped cases. International travel during the exposure period was reported by 19% (53) of cases. The travel destinations included Africa (5), Asia/South Pacific (19), Canada (4), Caribbean (1), Europe (2), Mexico (9), Middle East (3), and South/Central America (10).

Outbreaks of campylobacteriosis are rarely identified. However in 2005, an outbreak of campylobacteriosis with four confirmed and ten probable cases was associated with a school camping trip. No specific source was identified, but high-risk activities included consuming raw milk products and contact with farm animals and their fecal matter. That same year saw another outbreak associated with consumption of undercooked chicken liver pâté at a restaurant, with seven confirmed cases.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate sources of transmission including contaminated food and water

Epidemiology: Several species of Campylobacter bacteria cause disease in humans, with the most common being Campylobacter jejuni. Most cases of campylobacteriosis are associated with consumption of undercooked meat (especially poultry) or ready-to-eat foods that have been contaminated with juices from raw meat. Person-to-person transmission is uncommon. Large outbreaks due to Campylobacter are usually related to consumption of contaminated water, unpasteurized milk, or cheese. Humans can become infected after contact with infected pets, especially puppies and kittens. Campylobacteriosis is common in the developing world, so travelers to foreign countries are at higher risk of infection.

Clinical Aspects: The illness usually lasts from two to five days, rarely longer than ten days. Symptoms include diarrhea (sometimes bloody), abdominal cramps, fever, nausea, and vomiting. Most cases recover without antibiotic treatment. Rare post-infectious complications include reactive arthritis and Guillain-Barré syndrome.

Prevention: Cook all meats thoroughly, particularly chicken and pork. Avoid cross-contamination by ensuring that other foods such as fruits or vegetables do not come into contact with cutting boards or knives that have been used with raw meat or poultry. Avoid storing ready-to-eat foods in places where they could come in contact with uncooked meat and poultry or their drippings. Disinfect food preparation surfaces and utensils after each use. Wash hands after handling animals or pets (and their waste), or visiting a farm. Drink and eat only pasteurized milk and pasteurized milk cheeses. Wash hands thoroughly after using the bathroom, changing diapers, before preparing or eating food and after cleaning up after pets.
No cases of cholera were reported in 2009.

One case of cholera was reported each year during 2001, 2002, and 2003. All three cases were associated with international travel. No cases of cholera have been reported in King County residents since then.

Purpose of Surveillance:
- To identify outbreaks
- To identify and eliminate sources of transmission including contaminated food and water

Epidemiology: Cholera is an often severe and potentially fatal diarrheal disease caused by toxin-producing strains of the bacteria *Vibrio cholera*. It is spread by food and water that is contaminated by the feces of an infected person. The disease can spread rapidly when outbreaks occur in areas of the world with inadequate sewage treatment and drinking water. The bacteria can also live in seawater in warmer climates, causing illness in persons eating raw or undercooked shellfish from contaminated waters. Cholera does not naturally occur in the United States and is primarily acquired during travel to Africa, Asia, or Latin America. Outbreaks have also been caused by contaminated seafood brought back to the U.S. by travelers.

Clinical Aspects: Symptoms usually begin two to three days after exposure and include sudden onset of severe watery diarrhea, occasional vomiting and cramping, and dehydration. In severe untreated cases, death may occur in a few hours. Treatment is aggressive oral rehydration (or intravenous hydration for persons unable to drink) and anti-biotics.

Prevention: While traveling areas of the world where cholera is endemic, avoid water and food that may be contaminated (especially undercooked or raw shellfish, raw fruits, and raw vegetables).
CRYPTOSPORIDIOSIS

Thirty-one cases of cryptosporidiosis were reported in 2009. Rates of infection were highest in adults 45 through 54 years of age. No clusters of illness were identified. Three cases reported travel during their exposure period; each had been to Africa.

Cryptosporidiosis has been reportable in Washington since December 2000. Since that time, no large common-source outbreaks have been identified.

Purpose of Surveillance:
- To identify outbreaks
- To identify and eliminate sources of transmission including contaminated food and water

Epidemiology: Cryptosporidiosis is an intestinal parasitic infection caused by ingestion of Cryptosporidium parvum cysts (hardy, resistant eggs). The parasite produces cysts which are passed from the body in the stool. The infection is spread through ingestion of cysts in untreated surface water and contaminated swimming pools or other recreational water; contact with infected livestock, wild animals, and pets; and through person-to-person transmission via the fecal-oral route. The cysts are resistant to chlorine, and most swimming pool filters do not remove Cryptosporidia.

Clinical Aspects: Symptoms include fever, nausea, cramps, bloating, and watery diarrhea. Illness may last one to 14 days, but more severe and prolonged illness can occur in immunocompromised individuals. Special stool tests are required for diagnosis.

Prevention: Wash hands thoroughly with warm, soapy water after going to the bathroom, changing a diaper, before preparing meals, or eating. Disinfect diapering areas, toys, and cribs. Discourage children from putting shared objects in their mouths. Keep preschool children with diarrhea at home, away from other kids. Boiling water for at least one minute kills the parasite, but chlorination does not.
No cases of cyclosporiasis were reported in 2009.

Cyclosporiasis has been reportable in Washington since December 2000. One to five cases are typically reported each year.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate sources of transmission including contaminated food or water

Epidemiology: Infection with the parasite *Cyclospora cayetanensis* typically occurs when a person drinks or swims in contaminated water, or eats fruits or vegetables that have been rinsed with contaminated water. Cyclospora infection cannot be spread from person to person. The infection is endemic in many developing countries. Domestic infections can result from eating imported, contaminated produce, such as berries or herbs.

Clinical Aspects: *Cyclospora cayetanensis* invades the small intestine and causes persistent, watery diarrhea, nausea, fatigue, and weight loss. The incubation period for cyclosporiasis is about one week. Persons with healthy immune systems typically recover on their own. Immune-compromised persons may require treatment.

Prevention: Avoid consuming water that may be contaminated with stool or food that has been washed in contaminated water. When traveling in developing countries, avoid drinking unpurified water and eating raw fruits and vegetables (unless you have peeled them yourself).
DIPHTHERIA

No cases of toxigenic diphtheria were reported in 2009.

No cases of toxigenic diphtheria have been reported in Washington since 1979.

Purpose of Surveillance:
- To facilitate diagnosis of toxin-producing diphtheria infections
- To facilitate appropriate treatment of cases, disease control measures, and preventive treatment for contacts of cases
- To identify other exposed persons at risk for diphtheria

Epidemiology: Diphtheria is an acute, toxin-mediated disease caused by infection with Corynebacterium diphtheriae. It is primarily spread by contact with an infected person. Less often, it is spread by contact with articles soiled with the discharge from skin lesions of infected people or by ingestion of raw milk. Since universal vaccination began in the 1940s, diphtheria has been uncommon in the United States; however, the disease still occurs in developing countries and countries of the former Soviet Union. Diphtheria-infected travelers returning to the United States with incubating or untreated disease can transmit C. diphtheriae to their close contacts.

Clinical Aspects: Diphtheria primarily involves the tonsils, mouth, throat, and nose. Occasionally skin or membranes in other parts of the body, including the eyes or vagina, can be affected. A characteristic feature of diphtheria is grayish-white membrane in the throat, with surrounding inflammation. Inflammation of the heart with progressive heart failure may occur. Late complications include paralysis. Mortality rates for non-cutaneous diphtheria are 5% to 10%. The lesions of cutaneous diphtheria vary and may look very much like impetigo. Strains of Corynebacterium diphtheriae in cutaneous lesions are not usually toxin-producing.

Prevention: Immunization with a vaccine-containing diphtheria toxoid such as DTaP for children and Tdap or Td for adolescents and adults is the best means of prevention. All international travelers, regardless of age or destination, should ensure that they are up to date with all recommended vaccinations.
Sixty-six cases of Shiga toxin-producing Escherichia coli (STEC, also called enterohemorrhagic E. coli or EHEC) were reported in 2009. The rise in cases compared to recent years is largely due to better detection of non-O157 strains by increased Shiga toxin testing. Fifty-one (77%) cases were caused by E. coli O157, and fifteen (23%) by non-O157 strains of STEC; prior to 2009, only 0 to seven non-O157 cases were reported annually.

One child with a non-O157 strain was infected by drinking raw milk purchased at a natural food store chain. Twenty-two patients required hospitalization, and three patients developed hemorrhagic-uremic syndrome (HUS). Three cases (5%) reported international travel during their exposure period.

Three King County residents were infected with E. coli O157:H7 during a visit to a residential farm in Yakima County in July 2009; two secondary cases occurred in household members.

There were four national outbreaks of STEC associated with contaminated beef in 2009 but King County had no cases identified with these outbreaks.
Public Health received 571 foodborne illness (FBI) complaints in 2009. Of these, 63 (11%) resulted in inspections of the food service establishment by Public Health’s Environmental Health Division, and 33 (6%) were categorized as probable or confirmed outbreaks (i.e., has either evidence of food handling violations during an environmental investigation or strong epidemiologic evidence of an outbreak linked to the food source). Confirmed outbreaks also require laboratory confirmation of the suspected pathogen.

In 2009, at least 15 persons developed foodborne intoxication due to Bacillus cereus toxin after attending a party in July. Both food from the event and stool from one of the ill persons tested positive for large amounts of B. cereus bacteria. The implicated food was prepared the day before it was served and not properly refrigerated.

There was one confirmed case of scombroid poisoning and three probable cases.

FOODBORNE ILLNESS

Number of FBI complaints by year

<table>
<thead>
<tr>
<th>Year (2009)</th>
<th>Complaints</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1183</td>
</tr>
<tr>
<td>01</td>
<td>877</td>
</tr>
<tr>
<td>02</td>
<td>741</td>
</tr>
<tr>
<td>03</td>
<td>646</td>
</tr>
<tr>
<td>04</td>
<td>583</td>
</tr>
<tr>
<td>05</td>
<td>766</td>
</tr>
<tr>
<td>06</td>
<td>669</td>
</tr>
<tr>
<td>07</td>
<td>718</td>
</tr>
<tr>
<td>08</td>
<td>571</td>
</tr>
<tr>
<td>09</td>
<td>77</td>
</tr>
</tbody>
</table>

Mean FBI complaints by month 2004-2009

<table>
<thead>
<tr>
<th>Month</th>
<th>FBI Complaints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>62</td>
</tr>
<tr>
<td>Feb</td>
<td>54</td>
</tr>
<tr>
<td>Mar</td>
<td>69</td>
</tr>
<tr>
<td>Apr</td>
<td>50</td>
</tr>
<tr>
<td>May</td>
<td>55</td>
</tr>
<tr>
<td>Jun</td>
<td>60</td>
</tr>
<tr>
<td>Jul</td>
<td>57</td>
</tr>
<tr>
<td>Aug</td>
<td>58</td>
</tr>
<tr>
<td>Sep</td>
<td>44</td>
</tr>
<tr>
<td>Oct</td>
<td>46</td>
</tr>
<tr>
<td>Nov</td>
<td>39</td>
</tr>
<tr>
<td>Dec</td>
<td>65</td>
</tr>
</tbody>
</table>

Purpose of Surveillance:
- To identify outbreaks
- To identify and eliminate sources of transmission including contaminated food and water
- To identify unsafe food preparation and handling practices, particularly in commercial food establishments

Epidemiology: Foodborne illnesses (FBIs) are caused by eating food contaminated with:
- Pathogenic bacteria, viruses or parasites (e.g., Salmonella, E. coli O157:H7, norovirus, hepatitis A, Cyclospora)
- Toxins produced by bacteria (e.g., Staph aureus, Bacillus cereus, Clostridium perfringens, botulism)
- Naturally occurring toxins (e.g., poisonous mushrooms, fish and shellfish toxins), or
- Chemical poisons (e.g., detergents, pesticides, metals)

FBI reports tend to be higher in the summer months when warm weather favors proliferation of bacteria in food, and during the winter holiday season when group meals are common. Investigations are initiated in response to reports of suspected foodborne illnesses by citizens, health care professionals, and restaurants.

Clinical Aspects: FBI symptoms vary by the organism or substance causing the illness. Clinical manifestations include:
- Gastroenteritis characterized by diarrhea and/or vomiting (bacteria, viruses, parasites)
- Neurologic illness (botulism, paralytic shellfish poisoning, mushroom poisoning)
- Systemic illness (listeriosis, typhoid fever, hepatitis A)

Prevention: Proper food handling procedures are key to preventing foodborne illness. These measures include frequent handwashing, cooking and storing foods at correct temperatures, cooling foods appropriately, and preventing cross-contamination.
GIARDIASIS

In 2009, 100 cases of giardiasis were reported. The highest rate of illness was in the one to four-year-old age group.

Twenty cases occurred among international travelers. Travelers to Asia were the majority of the travel-related case with nine cases, followed by three to Central America (all to Costa Rica), three to Africa, three to the Middle East and two to Mexico.

Each year 400 to 700 cases are reported statewide.

Purpose of Surveillance:
- To identify outbreaks
- To identify and eliminate sources of transmission including contaminated food and water
- To identify cases associated with child-care centers and implement disease control measures

Epidemiology: *Giardia lamblia* is a flagellate protozoan widely found in nature. It is transmitted by ingesting food or water contaminated with the feces of infected humans and other mammals, especially beavers, puppies, and cats. Fecal-oral transmission can occur in child-care centers, households, and during sexual contact. Child-care center outbreaks are often associated with toddler wading pools where several diapered children share the same water. Like other enteric infections, rates of giardiasis increase during warmer months, probably because of more frequent exposure to contaminated water through swimming or camping. Travelers to developing countries are at increased risk of giardiasis as well.

Clinical Aspects: The typical incubation period is seven to 10 days, but can vary from five days to more than 25 days. Persons with giardiasis shed infectious cysts in their stool. The severity of illness ranges from asymptomatic to severe diarrhea, cramps, bloating, oily stools, fatigue, and weight loss. Untreated, the illness can last weeks to months.

Prevention: As with other diseases spread through the fecal-oral route, hand washing and good sanitation are the best strategies to prevent illness.
HAEMOPHILUS INFLUENZAE INVASIVE DISEASE

Purpose of Surveillance:
- To identify cases of Haemophilus influenzae serotype b (Hib) disease for investigation
- To identify contacts of persons with Haemophilus influenzae serotype b (Hib) infection, and ensure administration of appropriate post-exposure prophylaxis
- To monitor the occurrence of invasive disease due to non-serotype b Haemophilus influenzae

Epidemiology: Prior to the introduction of Hib conjugate vaccine in 1987, Hib was the leading cause of bacterial meningitis (causing over 20,000 cases per year), and a major cause of other serious bacterial infections among children under five years of age in the United States. After 1987, Hib cases rapidly declined, and invasive disease due to Hib is rare today. Non-typeable H. influenzae is rarely responsible for serious illness, but is a common cause of ear infections in children.

Clinical Aspects: H. influenzae type b can cause serious invasive illness such as meningitis, bacteremia, epiglottitis, and pneumonia. Before Hib vaccine was widely available, meningitis accounted for approximately 50-60% of invasive cases, and led to neurologic complications such as hearing impairment and permanent disability in 15-30% of cases. The diagnosis of invasive H. influenzae disease is made by isolating the organism from blood, cerebrospinal fluid (CSF), or another normally sterile body site.

Prevention: Routine childhood immunization is the best means of prevention.

One case of invasive disease (bacteremia and pneumonia) due to Haemophilus influenzae type b was reported in a 5-month-old King County resident. The case had received one dose of Hib vaccine prior to illness. The infant required hospitalization and survived the illness.

Statewide, four to 13 cases are reported each year in children under five years of age.
No cases of hantavirus pulmonary syndrome (HPS) were reported in 2009.

Since 1997, four cases of HPS have been reported in King County; three cases occurred in adult males and one in an adult female. Three cases were most likely exposed in Eastern or Central Washington and one in Idaho. No deaths have occurred since 1997 when one fatal case occurred.

Purpose of Surveillance:
- To facilitate diagnostic testing of suspected cases
- To identify sources of infection
- To facilitate environmental clean up of rodent-infested areas where cases have occurred

Epidemiology: Hantavirus pulmonary syndrome (HPS) was first reported in the United States in the Southwest in 1993. The *Sin Nombre* virus is the main cause of HPS reported in the U.S., but other hantaviruses cause similar diseases in other countries. In the U.S., the deer mouse is the main reservoir of the virus. Other wild rodents can also be carriers. Infected rodents shed the virus in their urine, saliva, and droppings, but do not show any signs of illness. Illness in humans results from inhalation of aerosolized virus-containing rodent excreta. The disease is not spread person-to-person.

Clinical Aspects: The incubation period is approximately two weeks, with a range of a few days to six weeks. The first symptoms are non-specific, including fever, muscle aches, and gastrointestinal symptoms, progressing rapidly to severe respiratory illness with hypotension that often requires mechanical ventilation.

Prevention: Keep mice and other rodents away from home, workplace, and places such as cabins, sheds, barns, garages, and storage facilities. Use a plastic trash can with a lid for kitchen garbage and food scraps. Store pet food in rodent-proof containers. Tightly cover outdoor garbage cans and raise them 12 inches off the ground. Take precautions when entering or cleaning rodent-infested areas including seasonal cabins.
Fifteen cases of hepatitis A were reported in 2009, of which 13 were in adults. Eight cases (53%) were associated with international travel to India (1), Mexico (3), South America (3), and the Philippines (1). Another case was exposed in King County from close contact with a visitor from South Korea.

An outbreak of hepatitis A infection with six confirmed cases (4 King County residents and 2 residents of nearby counties) was associated with a fast-food restaurant in Seattle.

Prior to the introduction of hepatitis A vaccine in 1995, hundreds of cases of hepatitis A occurred every year in King County with cyclical peaks occurring approximately every five years. Since the introduction of hepatitis A vaccine in 1995, hepatitis A cases have progressively declined nationally and locally.
HEPATITIS B – ACUTE AND CHRONIC INFECTIONS

Twelve cases of acute hepatitis B virus (HBV) infection were reported in 2009, the majority of which (83%) were men. Seven (58%) cases were suspected to have been exposed to hepatitis B through either sexual activity or injection drug use.

Chronic Hepatitis B

Six hundred and eleven cases of chronic hepatitis B were reported in 2009. Roughly half (56%) of these were in men.

Since chronic HBV infection became reportable in Washington in December 2000, the number of reports in King County has ranged from 400 to 878 each year. Reports of acute HBV cases in King County and nationally have been declining since the 1980s.

Purpose of Surveillance:
- To identify infectious cases and outbreaks
- To identify exposed persons eligible for post-exposure prophylaxis
- To identify and eliminate sources of transmission
- To identify pregnant women with hepatitis B, and ensure prompt preventive treatment to prevent infection of the newborn

Epidemiology: Hepatitis B virus (HBV) infects the liver. HBV is spread through infected blood and body fluids. Risk factors include being born to an HBV-infected woman, having unprotected sex, sharing injection drug equipment, sharing personal hygiene items (e.g., razors, nail clippers, toothbrushes), and living in a household with infected persons.

Clinical Aspects: The incubation period is six weeks to six months. Symptoms of acute HBV infection range from no symptoms to severe illness, and may include abdominal pain, loss of appetite, nausea, vomiting, and jaundice. Many infections go undetected; most infected infants and children, and up to 50% of adults have no symptoms. Acute infection in 90-95% of adults will resolve within six months. However, 50% of children and over 90% of infants with acute HBV infection develop chronic infection, which increases the risk of later liver disease including cirrhosis and liver cancer. One quarter of infants with chronic HBV infection develop liver disease later in life.

Prevention: Vaccinate children against hepatitis B as part of routine childhood immunizations. Also vaccinate adults at increased risk for infection. All pregnant women should be screened for HBV carriage, and children of carriers should be treated promptly with post-exposure prophylaxis of vaccine and hepatitis B immune globulin. Practice safe sex and avoid use of illicit injection drugs. Avoid exposure to contaminated blood and body fluids.

The decrease in the number of cases is attributed primarily to increasing use of hepatitis B vaccine as well as human immunodeficiency virus (HIV) prevention efforts among high-risk populations.
HEPATITIS C – ACUTE AND CHRONIC INFECTIONS

Acute Hepatitis C
rate by year (cases per 100,000)

SIX acute cases of hepatitis C virus (HCV) infection were reported in King County in 2009. Three (50%) occurred in men, and four of the six (66%) either reported or had laboratory evidence of past or present injection drug use.

Chronic Hepatitis C
rate by year (cases per 100,000)

In 2009, 1,589 chronic hepatitis C cases were reported.

Prior to 2000, acute HCV infection was reportable as acute non-A, non-B hepatitis. The number of cases that meet the criteria for acute infection remains consistently less than 1% of all reports (between six and 13 new cases per year). Because of the long delay between infection and development of symptoms leading to diagnosis, reports of chronic HCV cases are expected to remain high.

Purpose of Surveillance:
- To identify risk factors for hepatitis C virus (HCV) infection
- To identify and eliminate sources of transmission
- To provide education to cases in order to minimize risk of transmission and to reduce risk factors for development of chronic liver disease
- To monitor the prevalence of disease and associated disease burden in the community
- To identify epidemiological features of hepatitis C to guide prevention activities and HCV-related services

Epidemiology: HCV infects the liver and is transmitted primarily by direct exposure to the blood of an infected person. Before HCV screening was introduced in 1992, blood and blood-product transfusions accounted for a large proportion of infections. Today, most infections are associated with injection drug use (IDU). HCV can also be spread during childbirth. About 5% of children born to HCV-infected women will acquire HCV this way. Although sexual transmission of hepatitis C can occur, it is an uncommon route of infection. No post-exposure prophylaxis is available.

Clinical Aspects: Eighty-five percent of persons with acute HCV infections are asymptomatic. Symptoms of acute infection may include abdominal pain, anorexia, nausea, vomiting, rash, and jaundice. Sixty to 85% of persons infected with hepatitis C develop chronic infections, and approximately 10-15% will develop cirrhosis within 20 years after infection.

Prevention: Practice safe sex and avoid use of illicit injection drugs. Avoid exposure to contaminated blood and body fluids. No vaccine exists for HCV.
HEPATITIS E

No cases of hepatitis E were reported in 2009.

The only cases of HEV infection reported in the past ten years were a probable case in 2005 and a confirmed case in 2006, both in travelers exposed in India.

Purpose of Surveillance:
- To identify persons exposed to cases of infectious hepatitis E and provide counseling to prevent transmission
- To describe risk factors for the disease in King County residents

Epidemiology: Hepatitis E virus (HEV) is rare in the United States but is a common cause of viral hepatitis in developing countries. HEV is primarily acquired via the fecal-oral route, usually through contaminated drinking water. Outbreaks often occur after floods, monsoon rains, or other events that release raw sewage into the water supply. In the U.S., most cases occur among travelers to areas where HEV is endemic. Rare cases have occurred among persons who have not traveled.

Clinical Aspects: HEV causes an illness similar to hepatitis A virus (HAV) infection. The illness is acute and self-limited, without a chronic state. HEV infection is characterized by an abrupt onset of fever, malaise, nausea, vomiting, and abdominal pain. Jaundice follows within a few days. The spectrum of disease ranges from a mild illness lasting a few weeks to a severe illness lasting several months. Severity of illness appears to increase with age, and children are often asymptomatic and without jaundice. The illness is often more severe in pregnant women. The incubation period is 15 to 64 days. Secondary transmission in households through person-to-person transmission appears limited.

Prevention: No vaccine or treatment is available for HEV. Treatment with immune globulin (IG) is not effective in preventing infection in potentially exposed persons. The best methods of prevention are to avoid potentially contaminated water and food, and to use prevention measures recommended for hepatitis A and other enteric infections.
In 2009, 344 Human Immunodeficiency Virus (HIV) cases, 133 Acquired Immune Deficiency Syndrome (AIDS) cases, and 24 deaths were reported.

In recent years (2005-09), approximately 330 King County residents have been diagnosed with HIV annually, a decrease from 350-400 per year in the few years prior. An estimated 7,200 to 8,000 (0.4%) King County residents live with HIV or AIDS, including 6,575 cases diagnosed through the end of 2009. Estimates are that 11,500 to 12,700 people in Washington are currently infected with HIV.

HIV infection rates are highest in men who have sex with men (MSM). An estimated 14% of all MSM are infected, while 22% of MSM who inject drugs may be infected.

The rate of new HIV diagnoses per 100,000 population is highest among foreign-born Blacks (130.6), and similar among U.S.-born Blacks (36.0) and Hispanics (35.4). Rates are lowest among Whites (12.7), Asians (6.7), and Native Americans (13.2).

Purposes of Surveillance:

- Monitor the occurrence of HIV, AIDS, and HIV-related mortality in King County and describe characteristics of people living with HIV and AIDS
- Facilitate special laboratory testing among newly diagnosed people to estimate length of time infected and measure transmitted drug resistance
- Provide data to target prevention efforts to specific populations where infections are occurring
- Reduce spread of HIV through treatment of cases and identification and screening of partners
- Facilitate referral to appropriate care and other services

Epidemiology:

In King County, HIV is transmitted primarily through sexual exposure (90-95% of cases) or sharing of injection drug use equipment (5-9%). Three-quarters of sexual transmission is among men who have sex with men (MSM). HIV infection may be diagnosed weeks, months, or years after infection occurs. One quarter of cases are first diagnosed with HIV within 12 months of becoming infected, while one-third are not diagnosed until late in the course of HIV disease after CD4 cell levels have dropped substantially.

Clinical aspects:

If untreated, HIV infection attacks the CD4 cells of the immune system. Severe immune deficiency, or AIDS, occurs years after infection and is detected when an opportunistic infection or a low CD4 level (below 200 cells per microliter) is diagnosed. HIV infection generates a specific, life-long antibody response that is diagnosed with an ELISA screening test, and a specific confirmatory Western Blot test. CDC recommends that all patients aged 13-64 years test for HIV at least once in their life, and that persons at high-risk test every 3-12 months.

Prevention:

Knowledge of HIV status, early diagnosis and treatment, consistent and correct use of condoms, and use of needle exchange programs all can dramatically reduce new infections among high-risk individuals. HIV testing and treatment of pregnant women and prophylaxis of the infant has drastically reduced perinatal transmission to fewer than 150 infections per year nationally.

HIV is concentrated in urban areas: from 2001-2009, 59% of new HIV diagnoses in Washington state occurred among residents of King County.
INFLUENZA A 2009 H1N1

Pandemic influenza was the most notable public health event of 2009. Because the virus had genetic similarities with strains that primarily infect pigs, the illness was initially called “swine flu.”

The pandemic came in spring and fall waves. On April 27, 2009, the first King County resident with laboratory-confirmed 2009 H1N1 influenza was reported. By the end of the 2009, 432 hospitalizations due to laboratory-confirmed infection were reported, as well as 23 deaths.

Nationally, rates of hospitalization were highest for infants and toddlers age 0-4 years, although the death rates were highest for people 50-64 years old.

With seasonal influenza, about 60% of seasonal flu-related hospitalizations and 90% of flu-related deaths occur in people 65 years and older. By contrast, the CDC estimates that approximately 90% of estimated hospitalizations and 87% of estimated deaths due to 2009 H1N1 from April 2009 through April 10, 2010 occurred in people younger than 65 years old.

Like seasonal flu, people with certain underlying health conditions were at greater risk of serious hospitalization and death associated from this virus. Pregnant women were at particular risk for severe disease, and morbid obesity was also observed to be a previously unidentified risk factor for severe illness.

Purpose of Surveillance
- To detect the emergence of novel influenza
- To monitor influenza activity in the community
- To identify clusters of severe illness and outbreaks of influenza in institutional settings

Epidemiology: The influenza virus is spread person to person via respiratory droplets. Infected individuals shed virus one day before onset of symptoms and five to ten days after. Children and immune-compromised individuals can be infectious even longer.

Clinical Aspects: The incubation period is usually one to four days but can be as long as seven days. Influenza symptoms include the abrupt onset of fever, sore throat, runny or stuffy nose, body aches, headache, chills and fatigue. Influenza is often diagnosed clinically. Laboratory confirmation is done via rapid testing, virus culture, or tests for flu virus DNA. Individuals with severe illness or those with predisposing conditions may benefit from prompt antiviral therapy. When treatment is indicated, it should be started empirically, without waiting for laboratory confirmation of infection.

Prevention: Vaccination is the most important tool for prevention. Additionally, handwashing, cough etiquette and staying home when ill can reduce transmission. Prophylactic antiviral medication may be useful in preventing illness in high risk individuals, as well as for controlling outbreaks in institutional settings.
Nine cases of legionellosis were reported in 2009. Eight were cases of *L. pneumophila* and one was *L. bozemanii*. The cases ranged in age from 45 through 83 years old. All were hospitalized and one death was reported.

Among the nine cases was a cluster of two persons who were likely exposed in a whirlpool spa; one case was hospitalized and both survived.

In general, most cases of legionellosis are sporadic, with no source identified. Two to nine cases have been reported annually in King County since 2000.
No cases of human leptospirosis were reported in 2009.

Most human cases occur in international travelers or participants in outdoor recreational activities, including adventure races. Leptospirosis is present in wildlife in King County and cases of leptospirosis in dogs are reported each year, usually during the rainy seasons of winter and early spring.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate preventable sources of transmission

Epidemiology: Leptospirosis is a zoonotic disease caused by the bacteria *Leptospira interrogans*. Leptospirosis occurs worldwide, and is more common in temperate and tropical areas. Approximately 100 to 200 cases are identified annually in the U.S., of which half are reported in Hawaii. Some wild and domestic animals, such as rodents, raccoons, cattle, pigs, and dogs carry the *Leptospira* bacteria and pass them in their urine. Exposure occurs when water contaminated with the urine of infected animals is ingested or comes into contact with mucous membranes or breaks in the skin. People are often exposed through recreational activities such as swimming, canoeing, or participating in open water events such as triathlons or adventure racing. Leptospirosis is rarely spread from person to person. Occupations at greater risk include farmers, rice and sugarcane field workers, miners, slaughterhouse workers, sewer workers, and veterinarians. Non-severe cases of leptospirosis are likely under-recognized and under-reported.

Clinical Aspects: The incubation period for leptospirosis is typically ten days (with a range of two to 30 days). The illness lasts from a few days to several weeks. Most people have mild disease, but severity ranges from asymptomatic infections to life-threatening illness. Initial symptoms can include the insidious onset of fever, severe headache, back and leg pain, vomiting, and diarrhea. Some persons develop jaundice, kidney failure, or meningitis. Leptospirosis is diagnosed by testing for antibodies in the blood or by isolation of the bacteria from a clinical specimen.

Prevention: Avoid direct contact with animal urine and with water, soil and vegetation contaminated with animal urine. Wear gloves if contact with animal urine is likely to occur, and wash hands afterwards. Wear protective clothing and footwear in areas possibly contaminated with animal urine. Control rodents around the home and in recreational areas. Consult with a veterinarian about the need to vaccinate farm animals and dogs for leptospirosis.
LISTERIOSIS

In 2009, 5 cases of listeriosis were reported in King County. All five cases were hospitalized but none were fatal.

Two cases were documented infections in newborns (infected in utero by their mothers) and one was a documented infection in the mother of a newborn. All had consumed foods that are high risk for listeria.

Most listeriosis cases occur among the elderly, persons with weakened immune systems, and pregnant women. An average of six cases per year is reported in King County. In 2001, three pregnant Hispanic residents of King County developed listeriosis after consuming queso fresco. One of the women delivered an infected stillborn infant at 23 weeks gestation, and the other two women delivered infants that suffered serious medical complications requiring lengthy hospitalizations.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate sources of transmission, including contaminated food products

Epidemiology: Listeriosis is an infection caused by the bacteria *Listeria monocytogenes*. Persons at increased risk for severe infections include immunocompromised persons, the elderly, pregnant women, and newborn infants. The bacterium is unusual among foodborne pathogens in that it multiplies in refrigerated foods. Transmission occurs primarily through ingestion of contaminated drinks and foods, including raw (unpasteurized) or contaminated milk, soft cheeses, vegetables, and ready-to-eat meats. During pregnancy, infection can lead to spontaneous abortion, stillbirth, or premature birth. Transmission during delivery can cause severe, often fatal, infections in the newborn, even if the mother is asymptomatic.

Clinical Aspects: The median incubation period is three weeks (with a range of three to 70 days). Listeriosis can cause fever, muscle aches, nausea, vomiting and diarrhea. It also can cause infections with no symptoms or very mild symptoms. *Listeria* can infect the bloodstream and brain as well as the uterus and cervix. Miscarriages or fetal death can result even when the mother does not feel ill, especially when the infection has occurred late in pregnancy. Serious infections are treated with antibiotics in the hospital.

Prevention: Thoroughly cook and properly store foods. Wash raw produce. Do not consume unpasteurized milk products. In addition to these measures, pregnant women and persons with weakened immune systems should avoid hot dogs, deli meats, soft cheeses, and refrigerated smoked fish, and meat spreads.
LYME DISEASE

Eight cases of Lyme disease were reported in 2009. All had likely exposures outside of Washington. Six had traveled to Lyme disease endemic areas in the Midwest and Northeast U.S., and two had traveled to Scandinavian countries.

Most cases thought to be acquired in Washington state have had outdoor exposure in counties west of the Cascade Mountains or in the Cascade foothills, where *Ixodes* ticks as well as their deer and rodent hosts are located. Statewide fewer than 20 cases of Lyme disease are reported each year, and most are exposed outside Washington.

Purpose of Surveillance:
- To detect cases and investigate associated environmental risk factors
- To facilitate appropriate diagnostic testing and treatment for infected persons

Epidemiology: Lyme disease is caused by the bacteria *Borrelia burgdorferi*, which is transmitted by the bite of infected *Ixodes* ticks. In the U.S., Lyme disease is common in the northeastern states, Atlantic coastal states, and the upper Midwest. Infections occur most often in late spring and summer when ticks are most prevalent. Generally, Lyme disease is uncommon in the Pacific Northwest. In Washington state it occurs primarily in the western half of the state.

Clinical Aspects: The incubation period is typically seven to ten days, but ranges from three to 32 days. Seventy to 80% of infections begin with a classic “bulls-eye” shaped rash called erythema migrans that slowly expands in diameter. Other symptoms include malaise, fever, headache, joint and muscle pain, and swollen lymph nodes. With appropriate and timely antibiotic treatment most acute infections resolve without complications. However, long term neurologic and heart problems may result from untreated infections. Chronic arthritis may develop years after an untreated infection.

Prevention: When outdoors in areas with ticks, wear light colored, long-sleeved shirts, long pants tucked into socks, and closed shoes (not sandals). To prevent tick bites, use insect repellent with 20% - 30% DEET on exposed skin and clothing, and treat clothing with permethrin. After outdoor activities, wash clothing and check each person’s body, including hair, for ticks. Prompt removal of ticks can prevent disease transmission because ticks must be attached for at least 24 to 36 hours for infection to occur.
MALARIA

Seventeen cases of malaria were reported in 2009. Fourteen occurred among international travelers, and three were recent immigrants or refugees to the United States. Cases were infected in Africa (14) and South Asia (3).

Seven (41%) cases were identified as due to Plasmodium falciparum, five (29%) were P. vivax, two (12%) were P. ovale, one (6%) was P. malariae, and two were not typed. Approximately half of the cases were hospitalized, and one person died. Only two of the cases reported taking anti-malarial prophylaxis.

Purpose of Surveillance:
- To identify risk factors for malaria among King County residents
- To guide malaria prevention measures for travelers to malaria-endemic regions

Epidemiology: Malaria is an infection caused by a parasite of the genus Plasmodium, of which there are four species: malariae, vivax, ovale, and falciparum. The parasite is transmitted to humans in warmer climates through the bite of infected Anopheles mosquitoes. Untreated P. falciparum malaria has a high mortality rate. According to the World Health Organization, an estimated 500 million people worldwide become ill from malaria each year, mostly young children. In the United States, the last outbreak of locally acquired malaria occurred in Florida during 2003.

Clinical Aspects: The incubation period varies by species from seven to 40 days or longer. Symptoms of malaria include malaise, anorexia, chills, sweats, fever, and headache. The illness may last for days and has cycles of fever with relief of symptoms between peaks in temperature. Anti-malarial medications can delay symptoms by weeks or months, especially if the medications are not taken properly.

Prevention: Travelers to endemic countries are at risk for infection. Before travel to an area with malaria, see a health care provider to discuss prevention methods. These include mosquito repellents, protective clothing, preventive medications, and taking precautions at dusk and dawn when mosquitoes are most active.
MEASLES

One case of measles was reported in King County in 2009: an unvaccinated woman who traveled to India and was exposed to a child with measles.

In 2007 one case of measles was reported in King County in an unvaccinated child exposed to the virus while traveling in India. In 2004, six cases of measles in toddlers adopted from orphanages in China were investigated, with one secondary case in a family member visiting from California. In 2001, 12 cases of measles were reported, all linked to an outbreak in Korea.

Washington state typically has fewer than ten cases reported each year.

Purpose of Surveillance:
- To facilitate prompt diagnostic testing for measles
- To identify cases and exposed persons at risk for transmitting measles to others
- To identify susceptible contacts of cases for measles post-exposure prophylaxis or preventive treatment
- To implement disease control measures to prevent transmission

Epidemiology: Measles is one of the most highly contagious diseases known, but is preventable through vaccination. It is spread through coughing and sneezing. Measles is common in many parts of the world, including Europe. Local cases of measles are often linked to travel or exposure to recent travelers. Worldwide, more than 20 million people are infected each year. Measles is the leading cause of vaccine-preventable death among children in the world.

Clinical Aspects: Measles is an acute viral respiratory illness that is accompanied by a characteristic rash. Symptoms begin with fever, coryza, conjunctivitis, and cough. After two to four days the rash begins on the face and spreads downward to the rest of the body. The rash usually lasts four to seven days. Persons are considered contagious from four days before the onset of rash to four days after.

Complications of measles can include ear infections, pneumonia, and encephalitis. These complications can occur in all age groups, but are most severe in infants and adults. Diagnosis of measles must be confirmed by laboratory testing.

Prevention: Measles can be prevented through vaccination. The MMR vaccine combines protection against measles, mumps and rubella. In Washington state, all children are required to have documented measles immunization for entry into a school or child-care center. All international travelers should be up-to-date on measles vaccine. People exposed to measles should consult their health care provider immediately. Measles vaccine given within three days of exposure can help prevent infection in healthy non-pregnant persons.
MENINGOCOCCAL DISEASE

Purpose of Surveillance:
- To identify outbreaks and implement appropriate disease control measures including vaccination
- To identify exposed persons for post-exposure prophylaxis to prevent the spread of infection
- To monitor trends in the incidence of specific serotypes and strains of Neisseria meningitidis

Epidemiology: Meningococcal disease is caused by certain serogroups (primarily B, C and Y in the US) of the bacterium Neisseria meningitidis. The bacteria is present in the nose and throat and spreads through direct contact with saliva and respiratory droplets when talking, coughing, sneezing, kissing, etc. Meningococcal infection is spread by close contact (for example, among household members) and is not spread simply by being in the same room with an infected person. Rarely, transmission occurs by sharing eating utensils, glassware, cigarettes, or toothbrushes. Other risk factors for meningococcal disease include being less than one year of age, smoking, having had a recent viral respiratory infection, and living in a crowded setting (such as a college dormitory or military barracks).

Clinical Aspects: Meningitis is characterized by sudden onset of fever accompanied by severe headache, nausea, vomiting, stiff neck, and often a petechial rash. Meningococcal bloodstream infection or sepsis (meningococcemia) is characterized by abrupt onset of fever and a petechial or purpuric rash, often associated with low blood pressure, shock, and multi-system organ failure. Even when treated, approximately 8-15% of cases of invasive meningococcal disease are fatal. Long term effects, which occur in 10-20% of those who survive, include mental retardation, hearing loss, and amputation.

Prevention: Meningococcal vaccination protects against serogroups A, C, Y and W-135 and is recommended for adolescents and college freshmen living in dormitories. Travelers to areas of the world with high levels of meningococcal disease and persons with certain underlying immune system disorders should also be vaccinated. There is currently no vaccine for serogroup B disease.

Five cases of laboratory-confirmed invasive meningococcal disease were reported in 2009, four cases of bacteremia and one of meningitis. All cases were hospitalized; one died. Two of the isolates were serotype B, two were serotype Y, and one was serotype C.

In recent years, 40 to 80 cases of meningococcal disease have been reported annually in Washington.
One case of mumps was reported in 2009. The likely source of infection could not be determined.

In addition, two mumps cases were investigated in persons visiting King County from Japan and England. Both cases were exposed in their home countries where mumps outbreaks were occurring.

An unusually high number of mumps cases (53) were reported in Washington state in 2007, reflecting in part a change in reporting criteria, as well as increased testing following a large outbreak in the Midwest in 2006.
PARALYTIC SHELLFISH POISONING

No cases of paralytic shellfish poisoning (PSP) were reported in 2009.

The last case of PSP reported in King County was in 1998 when an outbreak with five cases occurred. A total of 14 cases were reported in Washington between 1997 and 2006.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify the source and prevent further distribution of contaminated shellfish
- Prevent consumption of contaminated shellfish

Epidemiology: Paralytic Shellfish Poisoning (PSP) is a neurologic syndrome caused by consuming shellfish contaminated with naturally-occurring toxic substances called "saxitoxins." High concentrations of these toxins occur in shellfish during algae blooms known as "red tides," but can also occur in the absence of a recognizable algae bloom. Saxitoxin contamination is monitored in Washington shellfish harvesting areas and in imported shellfish.

Clinical Aspects: Neurologic symptoms may begin within minutes to hours after eating contaminated shellfish, and include tingling, burning, numbness, drowsiness, incoherent speech, and respiratory paralysis. Additionally, gastrointestinal symptoms may occur. Symptoms usually resolve within a few days, and death is uncommon. Diagnosis is based entirely on symptoms and recent dietary history. Infection is confirmed by detection of the toxin in epidemiologically implicated food.

Prevention: Do not eat shellfish harvested from beaches known to be contaminated. The toxin is not inactivated by usual cooking or steaming.
In 2009, 37 cases of pertussis were reported. Children under the age of one year accounted for 24% of cases. Three cases were hospitalized and no fatalities were reported. Exposure to an ill household member was the suspected source for 41% of cases overall and for 67% of cases in children under the age of one.

In Washington state usually 400 to 1,000 cases of pertussis are reported annually. On average, the state has one death due to pertussis each year.

Purpose of Surveillance:
- To prevent transmission of pertussis to persons at high risk for severe illness
- To identify outbreaks and implement disease control measures including early recognition, testing, and treatment of cases

Epidemiology: Pertussis, also known as “whooping cough,” is a toxin-mediated disease caused by the bacteria *Bordetella pertussis*. It is spread through droplets from the mouth and nose when a person with pertussis coughs, sneezes, or talks. The disease is of particular concern in infants because they have higher rates of pneumonia, hospitalization, and death compared with older children and adults. Pertussis vaccination reduces the frequency and severity of disease among young children. However, the protective effects of natural pertussis infection and pertussis vaccine wane with time. Unrecognized infections in older children and adults are thought to be the most common source of pertussis transmission to infants in the community.

Clinical Aspects: “Classic” symptoms include a persistent, paroxysmal cough lasting two or more weeks that is worse at night and often followed by vomiting, although many cases are less severe and difficult to recognize. Infants can have poor feeding, pauses in breathing, or episodes of turning blue. Fever is usually low grade or absent. Pertussis in adolescents and adults may lack the classic symptoms. Symptoms may last for two to three months or even longer despite antibiotic treatment.

Prevention: Immunization is the best way to prevent pertussis. Diphtheria, tetanus, and acellular pertussis (DTaP) combination vaccine is recommended for all children. Tetanus toxoid, reduced diphtheria toxoid and acellular pertussis combination vaccine (Tdap) is recommended for use in children 11 to 18 years old, and as a single dose booster immunization for persons aged 19 to 64 years of age. Antibiotics can be used to prevent illness among close contacts of persons with pertussis.
No cases of plague were reported in 2009.

Since 1907, only one case of human plague has been reported in Washington, occurring in bubonic form in an animal trapper in 1984.

PLAGUE

<table>
<thead>
<tr>
<th>rate by year (cases per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rate</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cases</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Purpose of Surveillance:
- To investigate cases caused by potential agents of bioterrorism
- To identify naturally occurring sources of infection
- To confirm reported cases and to ensure that exposed persons receive post-exposure prophylaxis and/or monitoring

Epidemiology: Plague is caused by infection with the bacterium *Yersinia pestis*, found in rodents and their fleas in many areas of the world, including the United States. Human plague in the western U.S. occurs sporadically. Potential reservoirs for plague in Washington include wild animals; however, cases are most likely to be travel-related. Plague is a potential agent of biological terrorism. One case of pneumonic plague without travel to an endemic area may indicate an act of terrorism and constitutes a potential public health emergency.

Clinical Aspects: Forms of plague include bubonic, septicemic, pneumonic, and pharyngeal. *Bubonic plague* is the most common form and is transmitted by the bite of an infected flea, or through the contamination of a break in the skin with *Y. pestis*. Symptoms of Bubonic plague include swollen, tender lymph glands (called buboes), fever, headache, chills, and weakness. Bubonic plague is not spread from person-to-person. *Pneumonic plague* occurs when a person inhales *Y. pestis* suspended in respiratory droplets from an infected person (or animal), or from the spread of bubonic or septicemic plague to the lungs. People who do not receive prompt antibiotic treatment are not likely to survive. *Septicemic plague* refers to an infection of the bloodstream, and can be a complication of bubonic or pneumonic plague, or can occur by itself. Symptoms include fever, chills, abdominal pain, shock, and bleeding into the skin and other organs.

Prevention: In areas where plague exists, eliminate sources of food and nesting places for rodents around homes, work places, and recreation areas; remove brush, rock piles, junk, cluttered firewood, and potential food supplies, such as food for pets or wild animals. Make your home rodent-proof by repairing holes or gaps in outside walls.
No cases of polio were reported in 2009.

The last case identified in Washington occurred in 1977.

Purpose of Surveillance:
- To identify cases of imported poliomyelitis
- To identify cases and susceptible contacts of cases for post-exposure prophylaxis (e.g., immunization) and to institute infection control measures
- To differentiate naturally-occurring and vaccine-associated polio viruses

Epidemiology: Poliomyelitis (polio) is a paralytic disease classically caused by poliovirus, a highly infectious virus. Poliovirus is transmitted primarily from person-to-person via the fecal-oral route. At its peak in the United States, an estimated 21,000 cases of poliomyelitis were recorded in 1952. Polio vaccine was introduced in 1955, and the disease was declared eradicated from the Western Hemisphere in 1991, from the Western Pacific in 1997, and from Europe in 1998. The illness still occurs in some developing countries such as Afghanistan, India, Nigeria, and Pakistan and can be imported into countries where the disease has been eradicated, causing infections in susceptible or unvaccinated persons.

Clinical Aspects: The majority of cases have no symptoms, with flaccid paralysis occurring in less than 1% of all infections. When illness occurs, it starts with fever and may progress to meningitis and/or lifelong paralysis. Polio can be fatal. There is no treatment for polio. In areas of the world where live virus vaccine is in use, rare cases of vaccine-associated polio can occur.

Prevention: Inactivated polio vaccine (IPV) is recommended routinely for children up through age 18 years. IPV should be given to certain adults age 19 and older traveling to areas of the world where polio is still occurring.
PSITTACOSIS

No cases of psittacosis were reported in 2009.

Less than five cases of human psittacosis are reported each year in Washington state. The last reported human case in King County occurred in 1998.

Purpose of Surveillance:
- To identify sources of transmission (i.e., infectious birds), and decrease risk to humans
- To facilitate appropriate diagnostic testing and treatment for infected persons
- To implement control measures for contaminated areas and management of infected birds

Epidemiology: Psittacosis (parrot fever, avian chlamydiosis, or ornithosis) is caused by inhalation of the desiccated droppings, secretions, or dust from the feathers of birds infected with the bacterium *Chlamydia psittaci*. Psittacine birds such as parrots, parakeets, and cockatiels are the most common reservoir, but infection may also occur in other wild or pet birds. Birds may be symptomatic, particularly if stressed, but healthy-appearing birds can also carry the organism.

Clinical Aspects: The incubation period may range from five days to four weeks but is usually within ten days. Symptoms of human psittacosis include fever, headache, chills, muscle aches, sensitivity to light, and cough. Elderly and immunosuppressed people are most susceptible to infection. Psittacosis is usually diagnosed by its symptoms and a history of exposure to birds. Blood tests collected at the time of illness and again two to three weeks later can confirm the diagnosis.

Prevention: Do not purchase birds with signs of psittacosis or those kept in dirty or crowded conditions. Consult a veterinarian if a pet bird becomes ill.
Q FEVER

No cases of Q fever were reported in 2009.

In 2007 one case occurred in a traveler to a remote area in Australia. The person was exposed to newborn calves, and also reported hunting and skinning cattle, camels, and kangaroos.

Fewer than three cases of Q fever are reported annually in Washington state. The last death associated with Q fever occurred in 1987.

Purpose of Surveillance:
- To identify sources of transmission and reduce the risk to others
- To identify cases caused by potential agents of bioterrorism

Epidemiology: Q fever is caused by the bacterium Coxiella Burnetii. The infection occurs in animals including sheep, goats, cattle, some wild mammals, dogs, cats, birds, and ticks. Human exposure is typically through inhalation of dust that is contaminated with animal matter such as excrement and placental or birth fluids. Transmission also occurs by direct contact with infected animals and other contaminated materials, such as wool, straw, fertilizer, and laundry. Ingestion of raw milk from infected cows may be a potential source of exposure. Direct transmission by blood or marrow transfusion has been reported. Q fever is endemic in areas where reservoir animals are present, and occupationally affects veterinarians, meat workers, sheep workers, farmers, and occasionally dairy workers.

Clinical Aspects: The incubation period is typically two to three weeks. Symptoms of acute infection include fever, usually accompanied by rigors, muscle aches, malaise, and headache. There is considerable variation in severity and duration; infections may be unapparent or present as a nonspecific fever of unknown origin. Severe disease can include acute hepatitis, pneumonia, and meningoencephalitis. Asymptomatic and chronic infections may also occur. Chronic Q fever manifests primarily as endocarditis, which is potentially fatal and may evolve months to years after acute infection, particularly in persons with underlying valve disease. A chronic-fatigue-like syndrome has been reported in some Q fever patients. The case fatality rate in untreated patients is less than 1%.

Prevention: Avoid exposure to infected animals, especially if you have heart-valve disease or vascular grafts. Consume only pasteurized milk and milk products.
RARE DISEASES OF PUBLIC HEALTH SIGNIFICANCE

Creutzfeldt-Jakob Disease

Creutzfeldt-Jakob Disease (CJD) is a rapidly progressive neurodegenerative disorder that is always fatal, typically causing death within a year of onset. CJD is caused by prions, which are infectious proteins that cause illness when they fold abnormally in the brain. Classic CJD has been recognized since the early 1920s. The precise trigger is unknown. Most are sporadic (85%), and some are familial (15%). The diagnosis is confirmed by laboratory tests on brain tissue obtained by biopsy or autopsy. In recent years, the United States has reported fewer than 300 cases of CJD a year.

In 1996, a new type of CJD was recognized in the United Kingdom, called “variant” CJD (vCJD). This type is associated with Bovine Spongiform Encephalopathy (BSE), a neurodegenerative disorder in cattle also called “mad cow disease.” As of June 2008, only three vCJD cases have been identified in residents of the United States. All three likely were infected by eating cattle products contaminated with BSE while residing in the United Kingdom (two cases) or Saudi Arabia (one case).

In 2009, two cases of classic CJD and one case of familial CJD were reported in King County residents. All were laboratory-confirmed and fatal. The cases ranged in age from 45 to 76 years of age.

Cryptococcus gattii

Cryptococcus gattii is a fungus closely related to C. neoformans that can infect the pulmonary and central nervous systems of both animals and humans. Until recently, C. gattii was only found in certain subtropical and tropical environments. In 1999 it emerged on Vancouver Island, British Columbia and since then has been detected in other areas of the Pacific Northwest. The exact geographic distribution of the fungus is not known, and may be expanding.

In Washington State, C. gattii was first identified in cats near the Canadian border in 2005; dogs and pet birds have also been infected. A small number of human cases has been reported from western Washington.

Only two cases of C. gattii have been reported in King County. Both occurred in 2007 in immune suppressed adults who did not have an acute onset of illness. One was hospitalized and neither died.

“Rare diseases of public health significance” are defined as diseases or conditions of public health concern that are not commonly diagnosed in Washington residents. The purpose of conducting surveillance for these diseases is to understand the epidemiology of rare and emerging diseases. Examples include anthrax, babesiosis, Cryptococcus gattii, prion disease, and viral hemorrhagic fevers. Unexplained critical illnesses or unexplained deaths are reported separately as immediately notifiable conditions.

Rocky Mountain spotted fever

Rocky Mountain spotted fever (RMSF) is caused by the bacterium Rickettsia rickettsii, and is considered the most severe tick-borne infection.

R. rickettsii is transmitted via infected ticks, most commonly by the species Dermacentor. These 'hard ticks' are more commonly found in the western, south, and southeast regions of Washington. Activities where people are more likely to have contact with ticks include hiking or walking in wooded and dense brush areas, meadows, and in areas with weeds and tall grass. Over half of the nationally reported cases occur in the south-Atlantic region of the United States.

No cases were reported in 2009. There was a confirmed case in 2008 with a history of travel to eastern Washington and Yellowstone, as well as a probable case of RMSF in 2006 likely acquired while hunting in Kittitas County. In 2001 a confirmed case with a history of travel to Colorado was reported. In Washington state one or two cases of RMSF are reported each year.
RELAPSING FEVER

Two cases of tick-borne relapsing fever were reported in 2009. One case spent time in Okanogan County during the likely exposure period, and the other case was probably infected while staying in a cabin at a high elevation in California. One case was hospitalized, and both recovered fully.

Washington state reports two to eight cases of tick-borne relapsing fever each year. Most infections are acquired while vacationing in rural, mountainous areas between May and September. Fourteen cases of relapsing fever have been reported in King County since 1999, all associated with exposures outside of Western Washington.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate sources of transmission
- To facilitate environmental clean-up
- To facilitate appropriate treatment of infected persons

Epidemiology: Relapsing fever is caused by the bacteria *Borrelia*. In the United States it typically occurs in mountainous areas of the western states. It is transmitted to humans by the bites of argasid (soft) ticks that become infected when feeding on infected rodents, frequently squirrels and chipmunks. These ticks are found where rodents burrow and nest, often in older buildings. The ticks typically feed only at night and, unlike the ticks that cause Lyme disease, do not remain attached for prolonged times. They can survive for long periods between blood meals, and typically do not leave a noticeable bite wound. In the western United States and British Columbia, exposure commonly occurs in older buildings and cabins located in higher elevations.

Clinical Aspects: Recurring fevers of up to 105°F and lasting two to nine days are followed by afebrile periods lasting two to four days. Other symptoms can include headache, chills, body aches, prostration, nausea, and vomiting, and in some cases, a rash. The incubation period is typically seven to eight days (with a range of four to 18 days). Relapsing fever is diagnosed by examination of blood drawn during a febrile episode, bone marrow aspirates, or cerebrospinal fluid in a symptomatic person. Treatment is with an appropriate antibiotic.

Prevention: Avoid sleeping in rodent-infested buildings. Check sleeping areas in cabins for evidence of rodents. Avoid sleeping on the floor, and move beds away from walls to limit the possibility of contact with ticks. Make buildings rodent-proof, and remove rodent nesting materials from walls, ceiling, and floors. Use DEET-containing insect repellent on skin or clothing, and wear long sleeve shirts and long pants when in areas with ticks. Check your body regularly for ticks. If you find one, remove it by grasping its head with a set of tweezers and pulling straight out with a smooth, steady motion.
No cases of rubella were reported in 2009.

One adult case of rubella associated with international travel was reported in 2005 and two cases of rubella were reported in 2002 among unvaccinated, recent immigrants.

Washington state reports five to 15 cases each year.

Purpose of Surveillance:
- To prevent transmission to susceptible pregnant women and resultant congenital rubella syndrome
- To identify risk factors for rubella infection

Epidemiology: Rubella (German measles) is a viral illness spread through coughing and sneezing. When acquired by a mother early in pregnancy it can lead to premature delivery, congenital defects, and fetal death, depending on gestational age at time of infection. Congenital rubella syndrome (CRS) occurs in up to 85% of infants born to women who are infected with rubella during the first trimester. An average of five cases of CRS has been reported annually in the U.S. since 1980. Most reported post-natal rubella in the U.S. since the mid-1990s has occurred among Hispanic young adults who were born in Latin America and the Caribbean where rubella vaccine is not routinely used.

Clinical Aspects: Vision and hearing impairment or loss are among the many potential manifestations of CRS. In children and adults, rubella causes a usually mild illness consisting of a rash accompanied by mild fever and swollen lymph nodes. Adults may have an extended illness with arthritis, but other complications are rare. Diagnostic tests for rubella include antibody titers, virus isolation, and identification of viral antigen in blood or tissues.

Prevention: Immunization is the best way to prevent rubella. Rubella vaccine is included in the MMR combination vaccine which provides protection against measles, mumps and rubella. People exposed to rubella should consult their health care provider immediately.
SALMONELLOSIS

In 2009, 250 cases of salmonellosis were reported. The highest incidence was among infants and young children. Thirty-three cases (13%) were attributed to international travel. Forty-four (18%) required hospitalization, and none died.

An unusual salmonellosis outbreak occurred in which seventeen people (nine confirmed and eight suspected) became ill after eating at the same restaurant. Four different Salmonella serotypes were identified but illnesses could not be attributed to any one food or meal date. Several food handling problems and employee hygiene issues were identified at the restaurant and addressed by Public Health’s Environmental Health Division.

There were several multistate salmonellosis outbreaks in 2009 that affected King County residents including two S. typhimurium cases linked to an outbreak from pet African dwarf frogs and two S. rissen cases linked to an outbreak caused by black pepper imported from Asia. Red pepper used in the manufacture of salami was the culprit in another outbreak that sickened three King county residents.

Purpose of Surveillance:
- To identify common source outbreaks
- To identify and eliminate sources of transmission including contaminated food and water

Epidemiology: Salmonella infection is spread through the fecal-oral route, through contaminated food and water, and through direct and indirect contact with infected animals and their environments. Animals commonly infected with Salmonella include chickens, ducks, pigs, cows, rodents, and reptiles such as snakes, lizards, and turtles. Pets are a common source of infection. Infected children and individuals with poor hygiene can contaminate the household environment, leading to household transmission. Persons with salmonellosis can remain infected even after symptoms resolve and spread infection for several days to weeks, and in some cases longer.

Clinical Aspects: The incubation period is generally 12 to 36 hours (range 6 to 72 hours), and illness typically lasts four to seven days. Symptoms include fever, abdominal pain, diarrhea, headache, nausea, and in some cases, vomiting. Complications of salmonellosis include abscesses, arthritis, bacteremia, and meningitis. Infants, the elderly, and the immunocompromised are at increased risk of serious complications including death.

Prevention: Handwashing and careful food preparation are the keys to preventing salmonellosis. Infected individuals should be restricted from attending or working in child care, food service, and health care work while they have symptoms. Do not eat raw or uncooked eggs, poultry or meat. Always wash hands after contact with pets, especially reptiles and birds. Reptiles and turtles should not be kept as pets for small children or infants.

Finally, five cases of infection due to S. Typhimurium were linked to an outbreak caused by contaminated shredded lettuce that had been distributed and served mainly at fast-food restaurants.

Washington state typically reports 650 to 800 Salmonella cases each year, of which 200 to 300 are in King County. In recent years, “genetic fingerprinting” of Salmonella isolates has facilitated the identification of cases linked to nationwide outbreaks.
In 2009, 5,807 cases of chlamydial infection were reported among residents of King County, for a crude incidence of 308 per 100,000 persons. In 2009, 3,899 and 1,908 cases were reported among women and men respectively, yielding chlamydial infection rates of 412 per 100,000 women and 203 per 100,000 men (see sidebar regarding differences in screening practices among men and women).

Age-specific rates were highest among 15 to 19 year old women (2,369 cases per 100,000 persons) and 20-24 year old men (818 cases per 100,000 persons), likely reflecting the increased biological susceptibility of young women, low rates of condom use and relative high rates of partnership change among adolescents and young adults, and age discordant sexual partnerships between young women and older men.

Following the advent of widespread screening for chlamydial infection among women in the early 1990s, local and statewide rates declined from 1992 through 1997, but began to increase in 1998. This trend continued until 2003, when rates stabilized among King County women. Rates among women in other Washington counties followed a similar pattern; however, rates among women in other Washington counties stabilized at a higher level, and increased from 2007-2008, leading to consistently lower rates of chlamydial infection among King County women when compared to other Washington women for the past several years.

Purpose of Surveillance:
- To identify high risk populations for prevention activities
- To monitor trends in chlamydial infection and morbidity over time and across subpopulations

Epidemiology: Chlamydia is the most commonly reported infection in the United States. It is transmitted through unprotected sex (vaginal, anal, and possibly oral), and can be transmitted from a mother to her infant during childbirth. Chlamydial infection is often asymptomatic, so rates of disease incidence based on case reports underestimate the true incidence of infection. Recommended routine chlamydial screening for young women results in many more cases of chlamydia being detected among women than men, although the true incidence of disease is probably similar in men and women.

Clinical Aspects: Symptoms in women include burning with urination or vaginal discharge, due to urethral or cervical infection respectively. Symptoms in men include burning during urination and discharge from the penis. Symptoms of rectal infection may include discharge, pain, or bleeding. If left untreated, chlamydia can result in serious long term complications including pelvic inflammatory disease (PID), infertility, ectopic pregnancy, and/or chronic pelvic pain in women, and epididymitis in men. Many infections among women cause no or only mild symptoms and young sexually active women are at high risk for becoming infected. Therefore the CDC and Public Health – Seattle & King County recommend that sexually active women ages 14 to 24 are screened annually for chlamydia.

Prevention: The use of condoms during vaginal, anal, and oral sex, and treating contacts to infection are important in reducing the spread of chlamydial infection. Likewise, screening and treatment of infected persons and their sex partners are important prevention activities.
SEXUALLY TRANSMITTED DISEASES: GONORRHEA

In 2009, 1,084 cases of gonorrhea were reported among King County residents. Crude gonorrhea incidence in 2009 was 59 per 100,000 persons. This represents a decrease in incidence of 57% since 2006. However, while the decline in cases from 2006-2008 was among both men and women, in 2009, gonorrhea incidence declined only among women; among men, incidence was stable. Of the reported 2009 cases, 286 occurred among women, for a rate of 30 per 100,000, and 796 occurred among men, for an incidence of 85 per 100,000. This gender differential probably reflects a higher incidence of gonorrhea among men who have sex with men (MSM).

In 1992, the total crude incidence of gonorrhea was 123.8 per 100,000 persons. Rates of gonorrhea fell from 1992 until 1996, at which time they began to plateau (1996 rate: 56 per 100,000 persons). This trend continued until 2000, when gonorrhea rates began to rise in King County (2000 rate: 71). For several years, rates rose among both men and women and peaked at an incidence of 135 per 100,000 in 2006. This was followed by a sharp decline in incidence in 2007, and more moderate decreases in 2008 and 2009.

Purpose of Surveillance:
- To identify high risk populations for prevention activities
- To monitor trends in gonorrhea and associated morbidity over time and across subpopulations

Epidemiology: The bacteria *Neisseria gonorrhoeae* is transmitted through unprotected sex (oral, anal, and vaginal). Gonorrhea can also be transmitted from mother to infant during vaginal delivery. Because gonorrhea is often asymptomatic, many cases go unreported and rates based on case reports are an underestimate of the true burden of disease.

Clinical Aspects: Infected persons, particularly women, often do not have symptoms. About 10% of men and 50% of women with gonorrhea are asymptomatic. Symptoms of urethral infection among men may include discharge from the penis or burning during urination. In women, symptoms may include pain or vaginal discharge, burning during urination, irregular bleeding between menstrual periods, lower abdominal pain, or pain with intercourse. Symptoms of rectal infection in both women and men may include discharge, anal itching, painful bowel movements, or bleeding. Gonococcal infection in the throat may cause a sore throat, but more often results in no symptoms. If left untreated, gonorrhea may result in serious long term sequelae, including pelvic inflammatory disease (PID), infertility, ectopic pregnancy, and/or chronic pelvic pain in women, and epididymitis among men. Individuals with gonorrhea are also at higher risk for acquisition of HIV.

Prevention: The use of condoms during vaginal, anal, and oral sex, and treating contacts for infection are important in reducing the spread of gonorrhea. Likewise, screening and treatment of infected persons and their sex partners are important prevention activities.
SEXUALLY TRANSMITTED DISEASES: SYPHILIS

Of the 160 early syphilis cases reported in 2009, 33 were diagnosed with primary syphilis, 81 with secondary syphilis, and 46 with early latent syphilis. The overall incidence of early syphilis in King County was 8 per 100,000 in 2008. Heterosexuals accounted for eight cases (1 case per 100,000), and men who have sex with men (MSM) accounted for 145 cases (342 per 100,000). In 2009, 83 of the 145 early syphilis cases in MSM occurred in HIV positive MSM, resulting in an incidence of 1,669 cases per 100,000 HIV positive MSM, compared to an incidence of 134 cases per HIV negative MSM.

Purpose of Surveillance:
- To identify high risk populations for prevention activities
- To monitor trends in syphilis and associated morbidity over time and across subpopulations

Epidemiology: Syphilis, caused by the bacteria Treponema pallidum, is transmitted most often through unprotected sex (oral, anal, and vaginal). It can also be transmitted from mother to infant during pregnancy, at any time during pregnancy, and result in neonatal death, or congenital syphilis.

Clinical Aspects: If untreated, persons with syphilis typically experience four clinical stages of infection. Primary infection is characterized by a painless chancre at the site of infection an average of three weeks from the time of exposure. Symptoms of secondary syphilis usually occur three to six weeks later and include a rash which characteristically includes the palms and soles, lymphadenopathy, and malaise. Mucosal lesions of the oropharynx and genitals may also occur. Latent syphilis is characterized by a positive serologic test with a lack of clinical symptoms, although patients may have spontaneous infectious relapses during this stage, usually in the first year following infection. Early latent syphilis is defined as infection less than one year and late latent syphilis is infection of one year or greater in duration. Neurosyphilis, the symptomatic manifestation of T. pallidum’s invasion of the central nervous system, can occur at any stage of syphilis infection.

A pregnant woman who transmits syphilis to her fetus risks premature delivery and neonatal death. If untreated, an infected infant may develop late lesions resulting in blindness, deafness, mental retardation, bone deformities, and death.

Prevention: Condom use during oral, anal, and vaginal sex are important in preventing syphilis. Treating the partners of known syphilis cases is also key to reducing the spread of syphilis.

There was one case of congenital syphilis in 2009.

Since the late 1980s, two distinct epidemics of syphilis have occurred in King County. The first epidemic in the late 1980s and early 1990s was primarily among heterosexuals who reported use of crack cocaine. A second epidemic of syphilis among MSM in King County began in 1997 and has persisted since that time. HIV positive MSM have been particularly affected by the epidemic.
Sixty-one cases of shigellosis were reported in 2009. The majority of cases were *Shigella sonnei* (42), followed by *S. flexneri* (16), *S. boydii* (2) and *S. dysenteriae* (1). The most common risk factor for infection was international travel, with 25 cases reporting travel during their exposure period to Africa (10), Asia (7), Mexico (5), Central America (2), South America (1), and the Middle East (1).

Among the thirty-six shigellosis cases in 2009 that were not related to international travel, 15 (41.6%) were in men who were most likely infected through sexual contact with another man during their exposure periods. Though no clusters or outbreaks were identified, Seattle and other cities in the US have in the past had outbreaks of shigellosis among men who have sex with men.

In Washington, about 130 to 250 cases are reported annually.
No cases of tetanus were reported to Public Health in 2009.

The last case of tetanus reported in King County was in 2005 in an adult over 60 years of age. Gardening and a minor finger wound were the only risk factors identified. The patient was seriously ill, but survived. This was the first case of tetanus since 1996, when two cases were reported.

Purpose of Surveillance:
- To facilitate prompt, appropriate diagnostic testing and management of cases

Epidemiology: Tetanus results from the action of a neurotoxin produced in infected tissues by the bacterium Clostridium tetani, resulting in severe, potentially life-threatening muscle spasms. In the U.S., tetanus is predominately due to infected injuries, including acute wounds contaminated with dirt, saliva, or feces, puncture wounds, crush injuries, and unsterile injections. In the U.S., tetanus typically occurs in adults over 60 years of age, reflecting a lack of immunity in this population. In some developing countries, neonatal tetanus (in infants born to unvaccinated mothers) is the most common form.

Clinical Aspects: The most common symptom is stiffness of the jaw, commonly known as lockjaw, which makes it difficult to open the mouth. Other symptoms include stiffness of stomach and back muscles and contraction of facial muscles. Eventually painful muscle spasms develop. If they affect the chest and airways, the person can suffocate. Mortality from tetanus can be high even with appropriate treatment.

Prevention: Tetanus can be prevented with vaccination. DTaP vaccine - a combined vaccine against diphtheria, pertussis (whooping cough), and tetanus - is one of the routine childhood immunizations. Teenagers and adults get additional doses of tetanus-containing vaccine every ten years. Tdap (tetanus toxoid, reduced diphtheria toxoid and acellular pertussis) vaccine is recommended for use in children 11 to 18 years old, and as a single dose booster immunization for persons aged 19 to 64 years of age.
No cases of trichinosis have been reported in King County since 2000, when there was a human case due to consumption of homemade cougar jerky. Seven cases have been reported in Washington state since 1986.

Purpose of Surveillance:
- To identify common source exposures
- To identify and eliminate infected food products in order to prevent further consumption

Epidemiology: Trichinosis is caused by an intestinal roundworm, *Trichinella spiralis*, which infects many wild mammals. Human infection results from eating undercooked pork or wild game harboring the encapsulated cysts of *T. spiralis*. Encysted larvae survive some preparation methods for wild meat jerky, and some strains resist freezing. The larvae may infect persons if the meat is consumed without further cooking.

Clinical Aspects: Illness typically develops eight to 15 days (range five to 45 days) after ingestion of food containing the parasites. Symptoms are variable, and include vomiting, diarrhea, fatigue, and abdominal discomfort, followed by muscle and joint aches, weakness, chills, and eye swelling. Severity of disease is related to the number of worms consumed. Many infections are asymptomatic; mild to moderate infections can last several months.

Prevention: Thoroughly cook meat products until the juices run clear or to an internal temperature of at least 160°F (or 180°F for whole game). Freeze pieces of pork up to 15 cm thick for 30 days at 5°F to kill any worms. Freezing wild game meats (unlike freezing pork products), even for long periods of time, may not effectively kill all worms. Cook all meat, scraps, and garbage fed to pigs or other wild animals. Clean meat grinders thoroughly if you prepare your own ground meats. Curing (salting), drying, smoking, or microwaving meat does not consistently kill infective worms.
TUBERCULOSIS
rate by year (cases per 100,000)

<table>
<thead>
<tr>
<th>rate</th>
<th>cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>127</td>
</tr>
<tr>
<td>7.9</td>
<td>139</td>
</tr>
<tr>
<td>8.9</td>
<td>158</td>
</tr>
<tr>
<td>8.7</td>
<td>155</td>
</tr>
<tr>
<td>7.4</td>
<td>133</td>
</tr>
<tr>
<td>7.0</td>
<td>127</td>
</tr>
<tr>
<td>7.9</td>
<td>145</td>
</tr>
<tr>
<td>8.6</td>
<td>161</td>
</tr>
<tr>
<td>6.4</td>
<td>121</td>
</tr>
<tr>
<td>6.8</td>
<td>130</td>
</tr>
</tbody>
</table>

TB Incidence 2006-2009 for the U.S., Washington State, and Seattle & King County

<table>
<thead>
<tr>
<th>Incidence per 100,000 people</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. 2006</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>Incidence</td>
</tr>
<tr>
<td>WA state 2006</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>Incidence</td>
</tr>
<tr>
<td>Seattle & King County 2006</td>
</tr>
<tr>
<td>Incidence</td>
</tr>
</tbody>
</table>

In 2009, King County received reports of 130 cases of active tuberculosis (TB). The county’s rate of 6.8 cases per every 100,000 individuals remains higher than the national rate of 3.8 per 100,000.

Eighty-four percent of cases were born outside the United States. The highest numbers came from the Philippines, Somalia, Ethiopia, Vietnam, and India. The median age of TB cases in 2009 was 36 years. Native Hawaiians and other Pacific Islanders, Blacks and Asians have disproportionately higher rates of TB, and Hispanics continue to have higher rates than non-Hispanics.

There were three TB cases among HIV-infected persons, representing three percent of TB cases with known HIV serostatus. Fourteen percent of TB cases in King County were resistant to at least one TB medication.

Five pediatric cases (age 0-14 years) were diagnosed, three of them through contact investigations (i.e., family members or caretakers had active TB). Two pediatric cases were born in countries where TB is highly prevalent, and one was diagnosed within one year after immigrating to the United States.

Program Priorities:
- To ensure that persons with active TB are found and fully treated
- To ensure that contacts of persons with infectious TB are screened and offered appropriate preventive therapy
- To ensure that persons at high risk for TB infection and reactivation receive appropriate screening and preventive therapy
- To monitor the trend of TB in Seattle and King County

Epidemiology: TB, caused by *Mycobacterium tuberculosis*, is spread through airborne transmission. Individuals exposed to someone with active infectious TB may develop “latent TB” infection that has no symptoms and is not contagious. About one-third of the world’s population and five to ten percent of the U.S. population has latent TB. King County has an estimated 100,000 people with latent TB. About ten percent of those with latent TB infection will develop active TB disease in their lifetime. Those who have a weakened immune system have a higher risk of developing TB.

Clinical Aspects: TB usually affects the lungs, but sometimes other parts of the body such as the brain, kidneys, or spine are affected. Symptoms of active TB disease include: cough, weight loss, fatigue, fever, night sweats, chills, loss of appetite, pain when breathing or coughing, and coughing up bloody sputum. TB disease can be cured with appropriate treatment.

Prevention: Those with latent TB should be appropriately evaluated and treated. Individuals can decrease their risk of active TB disease by keeping their immune systems healthy and taking preventive therapy if diagnosed with latent TB.

More information on TB in King County including annual and quarterly surveillance reports is available on the TB Control Program website: www.kingcounty.gov/health/tb
TULAREMIA

Purpose of Surveillance:
- To identify and eliminate sources of transmission including contaminated food and water
- To identify cases caused by potential agents of bioterrorism

Epidemiology: Tularemia is caused by the bacterium *Francisella tularensis* which naturally infects animals, especially rodents, rabbits, and hares. Infected wildlife may be obviously ill (depressed, anorexic, ataxic, inactive, roughened coat, eye drainage) or may be found dead. People become infected by the bite of an arthropod (most commonly ticks and deerflies) that has fed on an infected animal, or by being bitten by an infected animal, handling infected animal carcasses, eating or drinking contaminated food or water, or by inhaling infected aerosols in a laboratory setting. The use of *F. tularensis* as a weapon of bioterrorism is of concern because it is highly infectious. As few as 10 to 50 organisms can cause disease.

Clinical Aspects: The incubation period is usually three to five days with a range of one to 14 days. Tularemia causes fever, chills, muscle aches, headache, and nausea and may present in one of several distinct forms; the most common is caused by arthropod bites and is characterized by a painful ulcer with swelling of regional lymph nodes. Ingestion of organisms in food or water can cause painful pharyngitis (sore throat), abdominal pain, diarrhea, and vomiting. Inhalation of *F. tularensis* can cause severe respiratory illness, including life-threatening pneumonia and systemic infection.

Prevention: Use insect repellent containing DEET on skin or clothing, and wear long sleeve shirts and long pants when in areas with ticks. Avoid dead or sick animals, and wear gloves when handling or dressing wild animals.

One case of tularemia was reported in 2009 in an adolescent with wounds from a pet falcon’s talons. The case was not hospitalized and recovered with antibiotic treatment.

Approximately 200 human cases of tularemia are reported annually in the U.S., mostly in persons living in the south-central and western states. In Washington two to eight reports of tularemia infections occur annually. Identified exposures include farming and rabbit skinning. Prior to 2009, the last case of tularemia in King County was reported in 2005 in a person who may have been infected from an arthropod bite while camping outside of King County.
Four typhoid fever cases were reported in 2009. Of these, three were exposed during international travel to countries where typhoid fever is endemic (Pakistan, Philippines, and Kenya). The fourth was a household contact of the case exposed in Kenya.

During 2009 there were also three cases of paratyphoid fever reported, two with recent travel to India and one with recent travel to Pakistan.

Fewer than ten cases per year are reported in Washington state.

Purpose of Surveillance:
- To identify and track chronic typhoid carriers who can transmit the disease
- To identify and eliminate sources of transmission, including contaminated food and water

Epidemiology: Typhoid and paratyphoid fever are caused by infection with the bacterium *Salmonella enterica* subspecies *enterica* serovar Typhi or Paratyphi. Humans are the only reservoirs of *S. Typhi* and *S. Paratyphi*. Typhoid is spread when a person drinks or eats food and water contaminated by human waste (stool or urine) containing *Salmonella* Typhi bacteria. The organism is often shed by chronic carriers of the bacteria. Typhoid and paratyphoid fever are not endemic in the United States.

Clinical Aspects: Typhoid and paratyphoid fever are potentially severe, systemic infections characterized by fever, headache, loss of appetite, malaise, lymph node inflammation, cough, and a rash (“rose” spots) on the trunk; constipation is reported more commonly than diarrhea. Children frequently experience only fever. The incubation period is typically eight to 14 days (range three to 60 days). The case-fatality rate is less than 1% with appropriate antibiotic therapy, but 15-20% of persons treated with antibiotics may experience relapses. Two to 5% of infected persons become chronic carriers, and can shed the organisms intermittently in their feces and urine for prolonged periods. The chronic carrier state is more common among middle-age persons, particularly women, and carriers often have biliary tract or gallbladder disease.

Prevention: Wash hands well with soap and water after going to the bathroom and before preparing food items. If traveling to a foreign country, be sure the drinking water is safe; take precautions to avoid traveler’s diarrhea. Maintain cleanliness and proper sanitation at all times, especially after a flood or other natural disasters. Vaccination against typhoid fever is usually recommended only for travelers going to developing countries where exposure to contaminated food or water is likely.
Twenty cases of vibriosis were reported in 2009.

Seventeen were gastrointestinal infections of which 16 were caused by *V. parahaemolyticus* and one by *V. fluvialis*. All were infected after consuming raw or undercooked shellfish, including oysters and crab. Thirteen (76%) of the 17 gastrointestinal infections were linked to a food establishment in King County, three to food establishments outside Washington, and one case was from recreational harvesting in Washington.

Three persons developed *V. alginolyticus* skin infections after recreational exposure to seawater.

From 2000 through 2009, an average of 14 vibriosis cases was reported in King County each year. The last outbreak of vibriosis occurred in 2006, when a total of 50 cases of vibriosis (39 laboratory-confirmed and 11 probable) were reported in King County residents.

The number of cases reported in Washington state varies year to year depending on environmental conditions.
Ten cases of yersiniosis were reported in 2009. Three cases most likely acquired their infection through consumption of contaminated food while traveling in Europe.

In King County, 54 cases were reported from 2004 to 2009. More than one-third of these cases occurred in children less than five years of age.

Washington state usually receives 20 to 40 reports of yersiniosis each year. The national rate of Yersinia infection has not changed significantly over the last several years, and was estimated by CDC to be 0.39 per 100,000 persons in 2004.